No CrossRef data available.
Published online by Cambridge University Press: 28 September 2023
The exact mechanisms leading to chromospheric heating are still ill-defined. While the presence of magnetic elements is undoubtedly necessary, the details of the heating, and its spatio-temporal distribution remain poorly understood. We contribute to this topic by analyzing the behavior of hot chromospheric fibrils surrounding network and plage elements, identified via the broader Hα profiles observed along their length; the H-α spectral line width has been shown to correlate with the local chromospheric temperatures through comparison with the ALMA millimeter-continuum brightness temperature. We make use of loop tracing and analysis software to investigate characteristics of the chromospheric hot fibrils including their length, number density, and transverse spatial extension in an enhanced network region.