Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T12:29:01.308Z Has data issue: false hasContentIssue false

Spatially resolved spectroscopy of lensed galaxies in the Frontier Fields

Published online by Cambridge University Press:  27 October 2016

Tucker Jones
Affiliation:
Institute for Astronomy, University of Hawaii at Manoa Honolulu, HI 96822, USA email: [email protected] Department of Physics, University of California, Santa Barbara Santa Barbara, CA 93106, USA Hubble Fellow
the GLASS collaboration
Affiliation:
http://glass.physics.ucsb.edu/
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-infrared spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O ii], [O iii], and Hα at z=1–3. The combination of strong gravitational lensing and Hubble's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z > 1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching stellar masses as low as ~107 M at z=2. I discuss precise measurements of these physical properties and implications for galaxy evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Anglés-Alcázar, D., Davé, R., Özel, F., & Oppenheimer, B. D. 2014, ApJ, 782, 84 Google Scholar
Belli, S., Jones, T., Ellis, R. S., & Richard, J. 2013, ApJ, 772, 141 Google Scholar
Cresci, G., Mannucci, F., Maiolino, R., et al. 2010, Nature, 467, 811 CrossRefGoogle Scholar
Förster Schreiber, N. M., Genzel, R., Bouché, N., et al. 2009, ApJ, 706, 1364 Google Scholar
Frye, B. L., Hurley, M., Bowen, D. V., et al. 2012, ApJ, 754, 17 Google Scholar
Gibson, B. K., Pilkington, K., Brook, C. B., Stinson, G. S., & Bailin, J. 2013, A&A, 554, A47 Google Scholar
Henry, A., Scarlata, C., Domínguez, A., et al. 2013, ApJ, 776, L27 CrossRefGoogle Scholar
Jones, T. A., Swinbank, A. M., Ellis, R. S., Richard, J., & Stark, D. P. 2010, MNRAS, 404, 1247 Google Scholar
Jones, T., Ellis, R., Jullo, E., & Richard, J. 2010, ApJ, 725, L176 Google Scholar
Jones, T., Ellis, R. S., Richard, J., & Jullo, E. 2013, ApJ, 765, 48 Google Scholar
Jones, T., Wang, X., Schmidt, K. B., et al. 2015, AJ, 149, 107 Google Scholar
Leethochawalit, N., Jones, T. A., Ellis, R. S., et al. 2015, ApJ submitted, arXiv:1509.01279Google Scholar
Livermore, R. C., Jones, T., Richard, J., et al. 2012, MNRAS, 427, 688 Google Scholar
Livermore, R. C., Jones, T. A., Richard, J., et al. 2015, MNRAS, 450, 1812 Google Scholar
Maciel, W. J., Costa, R. D. D., & Uchida, M. M. M. 2003, A&A, 397, 667 Google Scholar
Nesvadba, N. P. H., Lehnert, M. D., Eisenhauer, F., et al. 2006, ApJ, 650, 661 Google Scholar
Queyrel, J., Contini, T., Kissler-Patig, M., et al. 2012, A&A, 539, A93 Google Scholar
Rupke, D. S. N., Kewley, L. J., & Chien, L.-H. 2010, ApJ, 723, 1255 Google Scholar
Stark, D. P., Swinbank, A. M., Ellis, R. S., et al. 2008, Nature, 455, 775 Google Scholar
Swinbank, A. M., Sobral, D., Smail, I., et al. 2012, MNRAS, 426, 935 Google Scholar
Treu, T., Schmidt, K. B., Brammer, G. B., et al. 2015, ApJ, 812, 114 Google Scholar
Wisnioski, E., Förster Schreiber, N. M., Wuyts, S., et al. 2015, ApJ, 799, 209 CrossRefGoogle Scholar
Yuan, T.-T., Kewley, L. J., Swinbank, A. M., et al. 2011, ApJ, 732, L14 Google Scholar
Yuan, T.-T., Kewley, L. J., & Rich, J. 2013, ApJ, 767, 106 Google Scholar