Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T13:27:08.768Z Has data issue: false hasContentIssue false

The spatial evolution of stellar structures in the LMC/SMC

Published online by Cambridge University Press:  01 July 2008

Nate Bastian
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK email: [email protected]; [email protected]
Mark Gieles
Affiliation:
European Southern Observatory, Casilla 19001, Santiago 19, Chile email: [email protected]
Barbara Ercolano
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK email: [email protected]; [email protected]
Robert Gutermuth
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an analysis of the spatial distribution of various stellar populations within the Large and Small Magellanic Clouds. We use optically selected stellar samples with mean ages between ~9 and ~1000 Myr, and existing stellar cluster catalogues to investigate how stellar structures form and evolve within the LMC/SMC. We use two statistical techniques to study the evolution of structure within these galaxies, the Q-parameter and the two-point correlation function (TPCF). In both galaxies we find the stars are born with a high degree of substructure (i.e. are highly fractal) and that the stellar distribution approaches that of the “background” population on timescales similar to the crossing times of the galaxy (~ 80 Myr & ~ 150 Myr for the SMC/LMC respectively). By comparing our observations to simple models of structural evolution we find that “popping star clusters” do not significantly influence structural evolution in these galaxies. Instead we argue that general galactic dynamics are the main drivers, and that substructure will be erased in approximately the crossing time, regardless of spatial scale, from small clusters to whole galaxies. This can explain why many young Galactic clusters have high degrees of substructure, while others are smooth and centrally concentrated. We conclude with a general discussion on cluster “infant mortality”, in an attempt to clarify the time/spatial scales involved.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Allen, L., Megeath, S. T., & Gutermuth, R., et al. 2007, in Reipurth, B., Jewitt, D., & Keil, K. (eds.), Protostars and Planets V (Tucson: University of Arizona Press), p 361Google Scholar
Bastian, N. 2009, MNRAS, 392, 868CrossRefGoogle Scholar
Bastian, N., Gieles, M., Ercolano, B., & Gutermuth, R. 2008, MNRAS, in press, arXiv:0810.3190Google Scholar
Bastian, N., Ercolano, B., Gieles, M., Rosolowsky, E., Scheepmaker, R. A., Gutermuth, R., & Efremov, Y. 2007, MNRAS, 379, 1302CrossRefGoogle Scholar
Bastian, N. & Goodwin, S. P. 2006, MNRAS, 369, L9CrossRefGoogle Scholar
Cartwrigth, A. & Whitworth, A. P. 2004, MNRAS, 348, 589CrossRefGoogle Scholar
Elmegreen, B. G. 2008, ApJ, 672, 1006CrossRefGoogle Scholar
Elmegreen, B. G. & Efremov, Y. N. 1996, ApJ, 466, 802CrossRefGoogle Scholar
Elmegreen, B. G., Elmegreen, D. M., Chandar, R., Whitmore, B., & Regan, M. 2006, ApJ, 644, 879CrossRefGoogle Scholar
Gieles, M., Bastian, N., & Ercolano, E. 2008, MNRAS, 391, L93CrossRefGoogle Scholar
Gieles, M. & Bastian, N. 2008, A&A, 482, 165Google Scholar
Gieles, M., Lamers, H. J. G. L. M., & Portegies Zwart, S. F. 2007, ApJ, 668, 268CrossRefGoogle Scholar
Girardi, L., Bertelli, G., Bressan, A., Chiosi, C., Groenewegen, M. A. T., Marigo, P., Salasnich, B., & Weiss, A. 2002, A&A, 391, 195Google Scholar
Gomez, M., Hartmann, L., Kenyon, S. J., & Hewett, R. 1993, AJ, 105, 1927CrossRefGoogle Scholar
Gutermuth, R. A., Megeath, S. T., Pipher, J. L., Williams, J. P., Allen, L. E., Myers, P. C., & Raines, S. N. 2005, ApJ, 632, 397CrossRefGoogle Scholar
Hunter, D. A., Elmegreen, B. G., Dupuy, T. J., & Mortonson, M. 2003, AJ, 126, 1836CrossRefGoogle Scholar
Kroupa, P. 2002, MNRAS, 330, 707CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARAA, 41, 57CrossRefGoogle Scholar
Palla, F. & Stahler, S. W. 2000, ApJ, 540, 255CrossRefGoogle Scholar
Pellerin, A., Meyer, M., Harris, J., & Calzetti, D. 2007, ApJ, 658, L87CrossRefGoogle Scholar
Zaritsky, D., Harris, J., Thompson, I. B., & Grebel, E. K. 2004, AJ, 128, 1606CrossRefGoogle Scholar