Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T10:29:38.962Z Has data issue: false hasContentIssue false

Some highlights of the latest CoRoT results on stellar physics

Published online by Cambridge University Press:  18 February 2014

S. Deheuvels
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France email: [email protected] CNRS; IRAP; 14, avenue Edouard Belin, F-31400 Toulouse, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since its launch in December 2006, the CoRoT satellite has provided photometric data precise down to the micro-magnitude level for about 150 bright stars and 150 000 fainter ones. These stars have been observed over runs covering up to 160 days with a 90% duty cycle. Seismic data of such precision had been longed for by the scientific community for decades, and expected as a way of making progress in our understanding of stellar structure and evolution. The analysis and interpretation of CoRoT seismic data have indeed made it possible to place observational constraints on several key aspects of stellar structure and evolution, such as the size of mixed convective cores, magnetic activity, mass loss. . . We here present some highlights of the CoRoT results and their implications in terms of internal stellar structure.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Affer, L., Micela, G., Favata, F., Flaccomio, E., & Bouvier, J. 2013, MNRAS, 430, 1433CrossRefGoogle Scholar
Appourchaux, T., Michel, E., Auvergne, M., et al. 2008, A&A, 488, 705Google Scholar
Appourchaux, T., Benomar, O., Gruberbauer, M., et al. 2012, A&A, 537, A134Google Scholar
Ballot, J., Gizon, L., Samadi, R., et al. 2011, A&A, 530, A97Google Scholar
Barban, C., Deheuvels, S., Baudin, F., et al. 2009, A&A, 506, 51Google Scholar
Baudin, F., Barban, C., Belkacem, K., et al. 2011, A&A, 535, C1Google Scholar
Beck, P. G., Montalbán, J., Kallinger, T., et al. 2012, Nature, 481, 55Google Scholar
Belkacem, K., Dupret, M. A., & Noels, A. 2010, A&A, 510, A6Google Scholar
Belkacem, K., Dupret, M. A., Baudin, F., et al. 2012, A&A, 540, L7Google Scholar
Christensen-Dalsgaard, J., Monteiro, M. J. P. F. G., Rempel, M., & Thompson, M. J. 2011, MNRAS, 414, 1158CrossRefGoogle Scholar
Cieza, L. & Baliber, N. 2006, ApJ, 649, 862CrossRefGoogle Scholar
De Ridder, J., Barban, C., Baudin, F., et al. 2009, Nature, 459, 398CrossRefGoogle Scholar
Degroote, P., Aerts, C., Baglin, A., et al. 2010, Nature, 464, 259Google Scholar
Deheuvels, S. & Michel, E. 2011, A&A, 535, A91Google Scholar
Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ, 756, 19CrossRefGoogle Scholar
do Nascimento, J.-D. Jr., Takeda, Y., Meléndez, J., et al. 2013, ApJ, 771, L31Google Scholar
Dupret, M. A. 2001, A&A, 366, 166Google Scholar
Escobar, M. E., Théado, S., Vauclair, S., et al. 2012, A&A, 543, A96Google Scholar
García, R. A., Mathur, S., Salabert, D., et al. 2010, Science, 329, 1032Google Scholar
García Hernández, A., Moya, A., Michel, E., et al. 2009, A&A, 506, 79Google Scholar
García Hernández, A., Moya, A., Michel, E., et al. 2013, A&A, 559, A63Google Scholar
Gizon, L., Ballot, J., Michel, E., et al. 2013, Proc. of the Nat. Acad. of Sciences, 110, 13267Google Scholar
Goupil, M. J., Lebreton, Y., Marques, J. P., et al. 2011, Journal of Physics: Conference Series, 271, 012032Google Scholar
Houdek, G., Balmforth, N. J., Christensen-Dalsgaard, J., & Gough, D. O. 1999, A&A, 351, 582Google Scholar
Huat, A.-L., Hubert, A.-M., Baudin, F., et al. 2009, A&A, 506, 95Google Scholar
Kawaler, S. D. 1988, ApJ, 333, 236Google Scholar
Kjeldsen, H., Bedding, T. R., & Christensen-Dalsgaard, J. 2008, ApJ, 683, L175CrossRefGoogle Scholar
Lebreton, Y. & Goupil, M. J. 2012, A&A, 544, L13Google Scholar
Lignières, F., Rieutord, M., & Reese, D. 2006, A&A, 455, 607Google Scholar
Lignières, F., Georgeot, B., & Ballot, J. 2010, AN, 331, 1053Google Scholar
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A, 549, A74Google Scholar
Michel, E. & Baglin, A. 2012, arXiv: 1202.1422Google Scholar
Michel, E., Baglin, A., Auvergne, M., et al. 2008, Science, 322, 558Google Scholar
Mosser, B., Barban, C., Montalbán, J., et al. 2011, A&A, 532, A86Google Scholar
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A, 548, A10Google Scholar
Moya, A. & Rodríguez-López, C. 2010, ApJ, 710, L7Google Scholar
Neiner, C., Mathis, S., Saio, H., et al. 2012, A&A, 539, A90Google Scholar
Paparó, M., Bognár, Z., Benkő, J. M., et al. 2013, A&A, 557, A27Google Scholar
Pasek, M., Lignières, F., Georgeot, B., & Reese, D. R. 2012, A&A, 546, A11Google Scholar
Poretti, E., Michel, E., Garrido, R., et al. 2009, A&A, 506, 85Google Scholar
Reese, D., Lignières, F., & Rieutord, M. 2006, A&A, 455, 621Google Scholar
Roxburgh, I. W. & Vorontsov, S. V. 2003, A&A, 411, 215Google Scholar
Samadi, R., Georgobiani, D., Trampedach, R., et al. 2007, A&A, 463, 297Google Scholar
Samadi, R., Ludwig, H.-G., Belkacem, K., Goupil, M. J., & Dupret, M.-A. 2010, A&A, 509, A15Google Scholar
Samadi, R., Belkacem, K., Dupret, M.-A., et al. 2012, A&A, 543, A120Google Scholar
Stassun, K. G., Mathieu, R. D., Mazeh, T., & Vrba, F. J. 1999, AJ, 117, 2941Google Scholar
van Saders, J. L. & Pinsonneault, M. H. 2013, ApJ, 776, 67Google Scholar
Zahn, J.-P. 1992, A&A, 265, 115Google Scholar