Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T19:45:12.602Z Has data issue: false hasContentIssue false

Solid State DIBs

Published online by Cambridge University Press:  21 February 2014

H. Linnartz*
Affiliation:
Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, PO Box 9513, NL 2300 RA Leiden, The Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The diffuse interstellar bands are not due to solid state species. However, under the explicit assumption that DIB carriers survive the transfer from translucent to dark clouds, it is expected that for the low temperatures in the dense interstellar medium also DIB carriers accrete onto dust grains. Like all other molecules, apart from molecular hydrogen, they will get embedded in an ice matrix that largely consists of amorphous solid water. This offers - in principle - a tool to search for DIBs in complete different environments, both in space (i.e., towards embedded young stellar objects) and in the laboratory, namely in the solid state simulating interstellar ice analogues. Currently experiments are ongoing in the Sackler Laboratory for Astrophysics at Leiden Observatory to record optical ice spectra of potential DIB carriers. For this a new experimental approach has been developed. Its performance and potential are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Allodi, M. A., Baragiola, R. A., Baratta, G. A., Barucci, M. A., Blake, G. A., Boduch, Ph., Brucato, J. R., Contreras, C., Cuylle, S. H., Fulvio, D., Gudipati, M. S., Ioppolo, S., Kanuchov, Z., Lignell, A., Linnartz, H., Palumbo, M. E., Raut, U., Rothard, H., Salama, F., Savchenko, E. V., Sciamma-OBrien, E., & Strazzulla, G. 2013, Space Science Reviews, 180, 101Google Scholar
Bernstein, M. P., Sandford, S. A., Mattioda, A. L., & Allamandola, L. J. 2007, ApJ, 664, 1264Google Scholar
Bouwman, J., Paardekooper, D. M., Cuppen, H. M., Linnartz, H., & Allamandola, L. J. 2009, ApJ, 700, 56Google Scholar
Bouwman, J., Cuppen, H. M., Bakker, A., Allamandola, L. J., & Linnartz, H. 2010, A&A, 511, A33Google Scholar
Bouwman, J., Cuppen, H. M., Steglich, M., Allamandola, L. J., & Linnartz, H., 2011 A&A 529, A46Google Scholar
Cuylle, S. H., Tenenbaum, E. D., Bouwman, J., Linnartz, H., & Allamandola, L. J. 2012, MNRAS, 423, 1825CrossRefGoogle Scholar
Cuylle, S., Linnartz, H., & Thrower, J. 2012, Chem. Phys. Lett., 550, 79Google Scholar
Cuylle, S. H., Allamandola, L. J., & Linnartz, H., 2013, submitted.Google Scholar
Gibb, E. L., Whittet, D. C. B., Boogerts, A. C. A., & Tielens, A. G. G. M. 2004, ApJ Suppl. Ser., 151, 35Google Scholar
Gudipati, M. S. & Allamandola, L. J. 2003, ApJ, 596, L195Google Scholar
Gudipati, M. S. & Allamandola, L. J. 2006, ApJ, 638, 286Google Scholar
Linnartz, H., Bossa, J. B., Bouwman, J., Cuppen, H. M., Cuylle, S. H., van Dishoeck, E. F., Fayolle, E. C., Fedoseev, G., Fuchs, G. W., Ioppolo, S., Isokoski, K., Lamberts, T., Öberg, K. I., Romanzin, C., Tenenbaum, E. & Zhen, J. 2010 Proceedings IAU Symposium No. 280 ‘The Molecular Universe’ 390Google Scholar
Nagarajan, R. & Maier, J. P. 2010, Int. Rev. Phys. Chem., 29, 521Google Scholar
Öberg, K. I., Boogert, A. C. A., Pontoppidan, K. M., van den Broek, S., van Dishoeck, E. F., Bottinelli, S., Blake, G. A., & Evans, N. J. 2011, ApJ, 740, 109Google Scholar
Tielens, A. G. G. M. 2008, ARA&A, 46, 289Google Scholar