Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T19:09:25.276Z Has data issue: false hasContentIssue false

Solar-cycle precursors and predictions

Published online by Cambridge University Press:  18 July 2013

Jie Jiang*
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sunspot number data during the past 400 years indicates that both the profile and the amplitude of the solar cycle have large variations. Some precursors of the solar cycle were identified aiming to predict the solar cycle. The polar field and the geomagnetic index are two precursors which are received the most attention. The geomagnetic variations during the solar minima are potentially caused by the solar polar field by the connection of the solar open flux. The robust prediction skill of the polar field indicates that the memory of the dynamo process is less than 11 yrs based on the frame of the Babcock-Leighton flux transport dynamo. One possible reason to get the short magnetic memory is the high magnetic diffusivity in the convective zone. Our recent studies show that the radial downward pumping is another possible reason. Based upon the mechanism, we well simulate the cycle irregularities during RGO time period. This opens the possibility to set up a standard dynamo based model to predict the solar cycle. In the end, the no correlation between the polar field and the preceding cycle strength due to two nonlinearities involved in the sunspot emergence will be stressed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Baumann, I., Schmitt, D., Schüssler, M., & Solanki, S. K. 2004, A&A, 426, 1075 Google Scholar
Cameron, R. & Schüssler, M. 2007, ApJ, 659, 801 CrossRefGoogle Scholar
Cameron, R. H., Jiang, J., Schmitt, D., & Schüssler, M. 2010, ApJ, 719, 264 CrossRefGoogle Scholar
Cameron, R. H. 2011, in: Choudhuri, A. R. & Banerjee, D. (eds.), First Asia-Pacific Solar Physics Meeting (ASI Conference Series), p. 143Google Scholar
Cameron, R. H., Schmitt, D., Jiang, J., & Işík, E. 2012, A&A, 542, A127 Google Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, A&A, 427, 1019 Google Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Phys. Rev. Lett., 98, 131103 CrossRefGoogle Scholar
Choudhuri, A. R., 2012, these proceedingsGoogle Scholar
Dasi-Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R. H., & Peñuela, T. 2010, A&A, 518, 7 Google Scholar
Dikpati, M., de Toma, G., & Gilman, P. A. 2006a, Geophys. Res. Lett., 33, 5102 CrossRefGoogle Scholar
Dikpati, M. & Gilman, P. A. 2006b, ApJ, 649, 498 CrossRefGoogle Scholar
Du, Z. L., Li, R., & Wang, H. N. 2009, AJ, 138, 1998 CrossRefGoogle Scholar
Guerrero, G. & de Gouveia Dal Pino, E. M. 2008, A&A, 485, 267 Google Scholar
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, MNRAS, 381, 1527 CrossRefGoogle Scholar
Jiang, J., Cameron, R. H., Schmitt, D., & Schüssler, M. 2011a, A&A, 528, A82 Google Scholar
Jiang, J., Cameron, R. H., Schmitt, D., & Schüssler, M. 2011b, A&A, 528, A83 Google Scholar
Jiang, J., Cameron, R. H., Schmitt, D., & Schüssler, M. 2011c, Space Sci. Revs, 136Google Scholar
Jiang, J., Cameron, R. H., Schmitt, D., & Isik, E. 2012, submittedGoogle Scholar
Karak, B. B. & Nandy, D. 2012, ArXiv e-prints, 1206.2106Google Scholar
Kitchatinov, L. L. & Olemskoy, S. V. 2011, Ap. Lett., 37, 656 Google Scholar
Lockwood, M. 2003, J. Geophys. Res., 108, 1128 Google Scholar
Longcope, D. W. & Fisher, G. H. 1996, ApJ, 458, 380 CrossRefGoogle Scholar
Mackay, D. H., Priest, E. R., & Lockwood, M. 2002, Solar Phys., 209, 287 CrossRefGoogle Scholar
Makarov, V. I., Tlatov, A. G., & Sivaraman, K. R. 2003, Solar Phys., 214, 41 CrossRefGoogle Scholar
Mayaud, P.-N. 1972, J. Geophys. Res., 77, 6870 CrossRefGoogle Scholar
Ohl, A. I. 1966, Soln. Dann., 12, 84 Google Scholar
Parker, E. N. 1955, ApJ, 122, 293 CrossRefGoogle Scholar
Schatten, K. H., Scherrer, P. H., Svalgaard, L., & Wilcox, J. M. 1978, Geophys. Res. Lett., 5, 411 CrossRefGoogle Scholar
Schrijver, C. J., De Rosa, M. L., & Title, A. M. 2002, ApJ, 577, 1006 CrossRefGoogle Scholar
Stamper, R., Lockwood, M., Wild, M. N., & Clark, T. D. G. 1999, J. Geophys. Res., 104, 28325 CrossRefGoogle Scholar
Wang, Y.-M. 2009, Space Sci. Revs, 144, 383 CrossRefGoogle Scholar
Wang, Y.-M., Nash, A. G., & Sheeley, N. R. Jr. 1989, ApJ, 347, 529 CrossRefGoogle Scholar
Wang, Y.-M. & Sheeley, N. R. 2002, J. Geophys. Res., 107, 1302 Google Scholar
Wang, Y.-M. & Sheeley, N. R. 2009, ApJ Lett., 694, L11 CrossRefGoogle Scholar
Yeates, A. R., Nandy, D., & Mackay, D. H. 2008, ApJ, 673, 544 CrossRefGoogle Scholar