Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T03:18:08.171Z Has data issue: false hasContentIssue false

Solar astrometry with planetary transits

Published online by Cambridge University Press:  24 September 2020

Marcelo Emilio
Affiliation:
Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil Observatório Nacional, MCTIC, 20921-400 Rio de Janeiro, RJ, Brazil email: [email protected] Institute for Astronomy, University of Hawaii, Maui, HI 96768, USA emails: [email protected], [email protected]
Rock Bush
Affiliation:
Stanford University, Stanford, CA, 94305, USA email: [email protected]
Jeff Kuhn
Affiliation:
Institute for Astronomy, University of Hawaii, Maui, HI 96768, USA emails: [email protected], [email protected]
Isabelle Scholl
Affiliation:
Institute for Astronomy, University of Hawaii, Maui, HI 96768, USA emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planetary transits are used to measure the solar radius since the beginning of the 18th century and are the most accurate direct method to measure potentially long-term variation in the solar size. Historical measures present a range of values dominated by systematic errors from different instruments and observers. Atmospheric seeing and black drop effect contribute as error sources for the precise timing of the planetary transit ground observations. Both Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) made observations of planetary transits from space to derive the solar radius. The International Astronomical Union approved the resolution B3 in 2015, defining a nominal solar radius of precisely 695,700 km. In this work, we show that this value is off by more than 300 km, which is one order of magnitude higher than the error of the most recent solar radius observations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Ambronn, L. & Schur, A. C. W. 1905, Astronomische Mittheilungen der Koeniglichen Sternwarte zu Goettingen, Part 7. T.: Druck der Dieterich'schen Univ.-Buchdruckerei (W. Fr., 126 p.)Google Scholar
Antia, H. M. 1998, A&A, 330, 336Google Scholar
Antia, H. M., Basu, B., Pintar, J., Pohl, B. et al. 2000, Solar Physics, 192, 459CrossRefGoogle Scholar
Auwers, A. 1891, Astron. Nachr., 128, 361CrossRefGoogle Scholar
Benevides, P., Boczko, R., Clauzet, L. B. F., Leister, N. V. et al. 1979 A&AS, 36, 401Google Scholar
Brown, T. M., Stebbins, R. T., & Hill, H. A. 1978, AJ, 223, 324CrossRefGoogle Scholar
Brown, T. M. & Christensen-Dalsgaard, J. 1998, ApJ, 500, L195CrossRefGoogle Scholar
Bush, R. I., Emilio, M., & Kuhn, J. R. 2010, ApJ, 716, 1381CrossRefGoogle Scholar
Cullen, R. T. 1926, MNRAS, 86, 344CrossRefGoogle Scholar
Dziembowski, W. A., Goode, P. R., Kosovichev, A. G., Schou, J. 2000, Astrophysical Journal, 537, 1026CrossRefGoogle Scholar
Dziembowski, W. A., Goode, P. R., Schou, J. 2001, Astrophysical Journal, 553, 897CrossRefGoogle Scholar
Eddy, J. A. & Boornazian, A. A. 1979, Bull. Am. Astr. Soc., 11, 437Google Scholar
Emilio, M., Kuhn, J. R., Bush, R. I., & Scherrer, P. 2000, ApJ, 543, 1007CrossRefGoogle Scholar
Emilio, M. & Leister, N. V. 2005, MNRAS, 361, 1005CrossRefGoogle Scholar
Emilio, M., Kuhn, J. R., Bush, R. I., & Scholl, I. F. 2012, ApJ, 750, 135CrossRefGoogle Scholar
Emilio, M., Couvidat, S., Bush, R. I., Kuhn, J. R., & Scholl, I. F. 2015, ApJ, 798, 48CrossRefGoogle Scholar
Gething, P. J. D. 1955, MNRAS, 115, 558CrossRefGoogle Scholar
Gilliland, J. D. 1981, Astrophys. J., 248, 1144CrossRefGoogle Scholar
Haberreiter, M., Schmutz, W. & Kosovichev, A. G. 2008, ApJ, 675, L53CrossRefGoogle Scholar
Hauchecorne, A., Meftah, M., Irbah, A., Couvidat, A., Bush, R., & Hochedez, J.-F. 2014, ApJ, 783, 127CrossRefGoogle Scholar
Hill, H. A. & Stebbins, R. T. 1975, AJ, 200, 471CrossRefGoogle Scholar
Howse, D., 1975, Greenwich Observatory: The Royal Observatory at Greenwich and Herstmonceux 1675–1975, Volume 3: The Buildings and Instruments, Taylor & Francis, London, 92Google Scholar
Kuhn, J. R., Bush, R. I., Emilio, M. & Scherrer, P. H. 2014, ApJ 613, 1241CrossRefGoogle Scholar
Laclare, F. 1975, C. R. Acad. Sci. Paris, 280, 13CrossRefGoogle Scholar
Laclare, F. 1983, A&A, 125, 200Google Scholar
Laclare, F., Delmas, C., Coin, J. P., Irbah, A. et al. 1996, Solar Physics, 166, 211CrossRefGoogle Scholar
Lamy, P., Prado, J.-Y., Floyd, O., Rocher, P., Faury, G. & Koutchmy, S. 2015, Solar Physics, 290, 2617CrossRefGoogle Scholar
Meftah, M., Hochedez, J.-F., Irbah, A., Hauchecorne, A., Boumier, P., Corbard, T., Turck-Chièze, S., Abbaki, S., Assus, P., Bertran, E., Bourget, P., Buisson, F., Chaigneau, M., Damé, L., Djafer, D., Dufour, C., Etcheto, P., Ferrero, P., Hersé, M., Marcovici, J.-P. Meissonnier, M., Morand, F., Poiet, G., Prado, J.-Y., Renaud, C., Rouanet, N., Rouzé, M., Salabert, D., Vieau, A.-J., et al. 2014, Solar Physics, 289, 1043CrossRefGoogle Scholar
Meftah, M., Hauchecorne, A., Irbah, A., Corbard, T., Ikhlef, R., Morand, F., Renaud, C., Riguet, F., Pradal, F., et al. 2015 ApJ 808, 4CrossRefGoogle Scholar
Morrison, L. V. & Ward, C. G. 1975a, R. Gr. Obs. Bull., 181, 359Google Scholar
Morrison, L. V. & Ward, C. G. 1975b, MNRAS, 173, 183CrossRefGoogle Scholar
Morrison, L., Stephenson, R. & Parkinson, J. 1988, Nature, 331, 421CrossRefGoogle Scholar
Parkinson, J. H., Morrison, L. V., Stephenson, F. R. 1980, Nature, 288, 548CrossRefGoogle Scholar
Ribes, E., Ribes, J. C., & Barthalot, R. 1987, Nature, 326, 52CrossRefGoogle Scholar
Ribes, E., Merlin, Ph., Ribes, J. C., Barthlot, R., et al. 1989, Annales Geophysicae, 7, 321Google Scholar
Ribes, E., Beardsley, B., Brown, T. M., Delache., Ph., Laclare, F., Leister, N. V., et al. 1991, “The Sun in Time”, Univ. of Arizona Press, Space Sciencie Series, 59Google Scholar
Sánchez, M., Parra, F., Soler, M., & Soto, R. 1995, A&AS, 110, 351Google Scholar
Schou, J., Kosovichev, A. G., Goode, P. R., Dziembowski, W. A., et al. 1997, AJ, 489, L197CrossRefGoogle Scholar
Sofia, S., Heaps, W., & Twigg, L. W. 1994, AJ 427, 1048CrossRefGoogle Scholar
Sofia, S., Girard, T. M., Sofia, U. J., Twigg, L., Heaps, W., Thuillier, G., et al. 2013 MNRAS 436, 2151CrossRefGoogle Scholar
Sveshnikov, M. L. 2002 AstL, 28, 115SCrossRefGoogle Scholar
Tripathy, S. C. & Antia, H. M. 1999, Solar Physics, 186, 1CrossRefGoogle Scholar
Toulmonde, M. (1997) Astron. Astrophys., 325, 1177Google Scholar
Ulrich, R. K. & Bertello, L. 1995, Nature, 377, 214CrossRefGoogle Scholar
Watts, C. B. 1963, American Ephemeris, 17, 1Google Scholar
Wittmann, A. D. 1973, Solar Physics, 29, 333CrossRefGoogle Scholar
Wittmann, A. D. 1977, A&A, 61, 225CrossRefGoogle Scholar
Wittmann, A. D. 1980, A&A, 83, 312CrossRefGoogle Scholar
Wittmann, A. D., Alge, E., & Bianda, M. 1991, Solar Physics, 135, 243CrossRefGoogle Scholar
Wittmann, A. D., Alge, E., & Bianda, M. 1993, Solar Physics, 145, 205CrossRefGoogle Scholar
Wittmann, A. D. 1997, Solar Physics, 171, 231CrossRefGoogle Scholar
Wittmann, A. D. & Bianda, M. 2000, ESASP, 463, 113CrossRefGoogle Scholar
Wittmann, A. D. 2003, AN, 324, 378CrossRefGoogle Scholar