Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T02:32:15.391Z Has data issue: false hasContentIssue false

Solar activity influences on planetary atmosphere evolution: Lessons from observations at Venus, Earth, and Mars

Published online by Cambridge University Press:  24 September 2020

J. G. Luhmann*
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Pioneer Venus and Venus Express missions, and the Mars Express and MAVEN missions, along with numerous Earth orbiters carrying space physics and aeronomy instruments, have utilized the increasing availability of space weather observations to provide better insight into the impacts of present-day solar activity on the atmospheres of terrestrial planets. Of most interest among these are the responses leading to escape of either ion or neutral constituents, potentially altering both the total atmospheric reservoirs and their composition. While debates continue regarding the role(s) of a planetary magnetic field in either decreasing or increasing these escape rates, observations have shown that enhancements can occur in both situations in response to solar activity-related changes. These generally involve increased energy inputs to the upper atmospheres, increases in ion production, and/or increases in escape channels, e.g. via interplanetary field penetration or planetary field ‘opening’. Problems arise when extrapolations of former loss rates are needed. While it is probably safe to suggest lower limits based simply on planet age multiplied by currently measured ion and neutral escape rates, the evolution of the Sun, including its activity, must be folded into these estimations. Poor knowledge of the history of solar activity, especially in terms of coronal mass ejections and solar wind properties, greatly compounds the uncertainties in related planetary atmosphere evolution calculations. Prospects for constraining their influences will depend on our ability to do a better job of solar activity history reconstruction.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aarnio, A. N., Stassun, K.G., Hughes, W.J., McGregor, S.L. 2011. Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux – CME Mass Correlation. Sol. Phys. 268, 195212.CrossRefGoogle Scholar
Airapetain, V. S., Usmanov, A.V. 2016 Reconstructing the Solar Wind from Its Early History to Current Epoch. ApJL. 817. doi:10.3847/2041-8205/817/2/L24.CrossRefGoogle Scholar
Brace, L.H., Theis, R.F., Hoegy, W.R. 1982. Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci. 30, 29-37, doi:10.1016/0032-063390069-1.CrossRefGoogle Scholar
Brain, D. A., Baker, A. H., Briggs, J., Eastwood, J. P., Halekas, J. S., and Phan, T.D. 2010. Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape, Geophys. Res. Lett., 37, L14108. doi:10.1029/2010GL043916.CrossRefGoogle Scholar
Chaffin, M. S., Chaufray, J.Y., Stewart, I., Montmessin, F., Schneider, N. M., and Bertaux, J.L. 2014. Unexpected variability of Martian hydrogen escape. Geophys. Res. Lett., 41, 314-320, doi:10.1002/2013GL058578.CrossRefGoogle Scholar
Curry, S.M., Luhmann, J.G., Ma, Y.J., Liemohn, M., Dong, C., Hara, T. 2015. Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape. Planet. Space Sci. 115, 35, 47.CrossRefGoogle Scholar
Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E., Curry, S. M., Harada, Y., Luhmann, J. G., Jakosky, B. M. 2015, Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophys. Res. Lett., 42, 89428950, doi:10.1002/2015GL065346.CrossRefGoogle Scholar
Dong, C., Ma, Y., Bougher, S. W., Toth, G., Nagy, A. F., Halekas, J. S., Dong, Y., Curry, S. M., Luhmann, J. G., Brain, D., et al. 2015, Multi-fluid MHD study of the solar wind interaction with Mars’ upper atmosphere during the 2015 March 8th ICME event. Geophys. Res. Lett. 42, 91039112, doi:10.1002/2015GL065944.CrossRefGoogle Scholar
Dubinin, E., Fraenz, M., Pätzold, M., McFadden, J., Halekas, J. S., DiBraccio, G. A., Zelenyi, L. 2017. The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations. J. Geophys. Res. Space Phys., 122, 11285-11301. doi:10.1002/2017JA024741.CrossRefGoogle Scholar
Edberg, N. J. T., et al. 2011. Atmospheric erosion of Venus during stormy space weather. J. Geophys. Res. 116, A09308.CrossRefGoogle Scholar
Fang, X., Liemohn, M. W., Nagy, A. F., Ma, Y., De Zeeuw, D. L., Kozyra, J. U., Zurbuchen, T. H. 2008, Pickup oxygen ion velocity space and spatial distribution around Mars. J. Geophys. Res. 113, A02210, doi:10.1029/2007JA012736.CrossRefGoogle Scholar
Fegley, B., Jr. 2014. Venus. In H. D. Holland, & K. K. Turekian (Eds.), Treatise on Geochemistry, 2nd ed., vol. 2 (pp. 127–148). Amsterdam, Netherlands: Elsevier.CrossRefGoogle Scholar
Futaana, Y., Stenberg Wieser, G., Barabash, S., et al. 2017. Solar Wind Interaction and Impact on the Venus Atmosphere, Space Sci. Rev. 212, 1453. doi:10.1007/s11214-017-0362-8.CrossRefGoogle Scholar
Gray, C.L., Chanover, N.J., Slanger, T.G., Molaverdikhani, K. 2014. The effect of solar flares, coronal mass ejections, and solar wind streams on Venus’ 5577Å oxygen green line. Icarus. 233, 342-347. doi:10.1016/j.icarus.2014.01.029.CrossRefGoogle Scholar
Hall, S. 2019. Venus is Earth’s evil twin - and space agencies can no longer resist its pull. Nature. 570, 20-25. doi:10.1038/d41586-019-01730-5.CrossRefGoogle ScholarPubMed
Hu, R., Kass, D., Ehlmann, B. et al. 2015. Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Comm. 6, 10003. doi:10.1038/ncomms10003.CrossRefGoogle ScholarPubMed
Jakosky, B. Brain, D., Chaffin, M., Curry, S., Deighan, J., Grebowsky, J., Halekas, J., Leblanc, F., Lillis, R., Luhmann, J.G. et al. 2018. Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus. 315, 146-157. https://doi.org/10.1016/j.icarus.2018.05.030.CrossRefGoogle Scholar
Jarvinen, R., Kallio, E., Dyadechkin, S., et al. 2010. Widely different characteristics of oxygen and hydrogen ion escape from Venus. Geophys. Res. Lett. 37, L16201. doi:10.1029/2010GL044062.CrossRefGoogle Scholar
Kasting, J. F. 1988. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus, 74, 472494.CrossRefGoogle ScholarPubMed
Lammer, H., Kasting, J. F., Chassefière, E., et al. 2008. Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399436. doi:10.1007/s11214-008-9413-5.CrossRefGoogle Scholar
Lee, C. O., Jakosky, B. M., Luhmann, J. G., Brain, D. A., Mays, M. L., Hassler, D. M., et al. 2018. Observations and impacts of the 10 September 2017 solar events at Mars: An overview and synthesis of the initial results. Geophys. Res. Lett. 45, 88718885. https://doi.org/10.1029/2018GL079162.CrossRefGoogle Scholar
Liu, Y., Luhmann, J., Kajdič, P. et al. 2014. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat Comm. 5, 3481. doi:10.1038/ncomms4481.CrossRefGoogle ScholarPubMed
Luhmann, J. G., et al. 2017, Martian magnetic storms. J. Geophys. Res. Space Physics. 122, 61856209, doi:10.1002/2016JA023513.CrossRefGoogle Scholar
Luhmann, J.G., Curtis, D.W., Schroeder, P. et al. 2008. STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview. Space Sci. Rev. 136, 117. doi:10.1007/s11214-007-9170-x.CrossRefGoogle Scholar
Luhmann, J. G., Kasprzak, W. T., and Russell, C. T. 2007, Space weather at Venus and its potential consequences for atmosphere evolution. J. Geophys. Res. 112, E04S10. doi:10.1029/2006JE002820.CrossRefGoogle Scholar
Luhmann, J.G., Ledvina, S.A., Lyon, J.G., Russell, C.T. 2006. Venus O+ pickup ions: Collected PVO results and expectations for Venus Express. Planet. Space Sci. 54, 1457-1471, doi:10.1016/j.pss.2005.10.009.CrossRefGoogle Scholar
Luhmann, J. G., Russell, C. T., Scarf, F. L., Brace, L. H., and Knudsen, W. C. 1987. Characteristics of the Marslike limit of the Venus-solar wind interaction. J. Geophys. Res. 92 (A8), 85458557. doi:10.1029/JA092iA08p08545.CrossRefGoogle Scholar
Ma, Y. J., et al. 2017. Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A time-dependent MHD study. J. Geophys. Res. Space Physics. 122, 17141730, doi:10.1002/2016JA023402.CrossRefGoogle Scholar
McEnulty, T. 2012. Oxygen Loss from Venus and the Influence of Extreme Solar Wind Conditions, PhD thesis, University of California, Berkeley. https://www.worldcat.org/title/oxygen-loss-from-venus-and-the-influence-of-extreme-solar-wind-conditions/oclc/842823603.Google Scholar
Moore, T. E., Horwitz, J. L. 2007. Stellar ablation of planetary atmospheres. Rev. Geophys. 45, RG3002. doi:10.1029/2005RG000194.CrossRefGoogle Scholar
Osten, R., Wolk, S. 2016. A Framework for Finding and Interpreting Stellar CMEs. Proceedings of the International Astronomical Union, 12(S328), 243-251. doi:10.1017/S1743921317004252.CrossRefGoogle Scholar
Phillips, J. L., Stewart, A. I. F., Luhmann, J. G. 1986. The Venus ultraviolet aurora: Observations at 130.4 nm. Geophys. Res. Lett.13,1047-1050, doi:10.1029/GL013i010p01047.CrossRefGoogle Scholar
Pizzo, V. J. 1978. A Three-Dimensional Model of Corotating Streams in the Solar Wind - I. Theoretical Foundations. J. Geophys. Res. 83, 55635572.CrossRefGoogle Scholar
Ruhunusiri, S., et al. 2016, MAVEN observations of partially developed Kelvin-Helmholtz vortices at Mars. Geophys. Res. Lett. 43, 47634773. doi:10.1002/2016GL068926.CrossRefGoogle Scholar
Russell, C.T., Luhmann, J.G., Strangeway, R.J. 2016. Space Physics: An Introduction, Cambridge University Press.Google Scholar
Russell, C. T., Luhmann, J. G., Elphic, R. C., Scarf, F. L. and Brace, L. H. 1982. Magnetic field and plasma wave observations in a plasma cloud at Venus. Geophys. Res. Lett. 9, 45-48. doi:10.1029/GL009i001p00045.CrossRefGoogle Scholar
Schneider, N. M., Jain, S. K., Deighan, J., Nasr, C. R., Brain, D. A., Larson, D., et al. 2018. Global aurora on Mars during the September 2017 space weather event. Geophys. Res. Lett., 45, 7391-7398. https://doi.org/10.1029/2018GL077772.CrossRefGoogle Scholar
Schneider, N. M., Deighan, J. I., Jain, S. K., Stiepen, A., Stewart, A. I. F., Larson, D., Mitchell, D. L., Mazelle, C., Lee, C. O., Lillis, R. J., Evans, J. S., Brain, D., Stevens, M. H., McClintock, W. E., Chaffin, M. S., Crismani, M., Holsclaw, G. M., Lefevre, F., Lo, D. Y., Clarke, J. T., Montmessin, F., Jakosky, B.M. 2015. Discovery of diffuse aurora on Mars. Science. 350, doi:10.1126/science.aad0313.CrossRefGoogle Scholar
Shibayama, T., Maehara, H., Notsu, S., Notsu, Y., Nagao, T., Honda, S., Ishii, T., Nogami, T., Daisaku, T., Kazunari, S. 2013. Superflares on Solar-type Stars Observed with Kepler. I. Statistical Properties of Superflares. ApJ Supp. 209.CrossRefGoogle Scholar
Tsiaras, A., Waldmann, I.P., Tinetti, G. et al. 2019. Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18 b. Nat Astron. doi:10.1038/s41550-019-0878-9.Google Scholar
Tu, L., Johnstone, C.P., Guedel, M., Lammer, H. 2015. The extreme ultraviolet and X-ray Sun in Time: High-energy evolutionary tracks of a solar-like star, Astron. Astrophys. 577, doi:10.1051/0004-6361/201526146.CrossRefGoogle Scholar
Villanueva, G. L., Mumma, M. J., Novak, R. E., Käufl, H. U., Hartogh, P., Encrenaz, T. Tokunaga, A., Khayat, A., Smith, M. D. 2015. Strong water isotopic anomalies in the Martian atmosphere: Probing current and ancient reservoirs, Science 348. 218-221. doi:10.1126/science.aaa3630, 2015.CrossRefGoogle Scholar
Walsh, B. M., Foster, J. C., Erickson, P. J., Sibeck, D. G. 2014. Simultaneous Ground- and Space-Based Observations of the Plasmaspheric Plume and Reconnection. Science. 343, 1122-1125, doi:10.1126/science.1247212. Jarvinen, R., Kallio, E., Dyadechkin S., et al. 2010. Widely different characteristics of oxygen and hydrogen ion escape from Venus. Geophys. Res. Lett. 37, L16201. doi:10.1029/2010GL044062.CrossRefGoogle ScholarPubMed
Wood, B.E., Linsky, J.L., Güdel, M. 2015. Stellar Winds in Time. In: Lammer, H., Khodachenko M. (eds) Characterizing Stellar and Exoplanetary Environments. Astrophysics and Space Science Library, 411. Springer.CrossRefGoogle Scholar
Xu, S. et al. 2018. Investigation of Martian Magnetic Topology Response to 2017 September ICME, Geophys. Res. Lett., 45, 73377346. doi:10.1029/2018GL077708 CrossRefGoogle Scholar
Zhang, T.-L. et al. 2012. Magnetic reconnection in the near Venusian magnetotail. Science. 336, 567570.CrossRefGoogle ScholarPubMed