Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T17:21:57.691Z Has data issue: false hasContentIssue false

SN1987A: the X-ray remnant at age 25 years

Published online by Cambridge University Press:  05 September 2012

David N. Burrows
Affiliation:
Dept. of Astronomy & Astrophysics, Penn State University, University Park, PA 16802USA; email: [email protected];
Sangwook Park
Affiliation:
U. Texas-Arlington, Arlington, TX, USA;
Eveline A. Helder
Affiliation:
Dept. of Astronomy & Astrophysics, Penn State University, University Park, PA 16802USA; email: [email protected];
Daniel Dewey
Affiliation:
MIT Kavli Institute, Cambridge, MA, USA
Richard McCray
Affiliation:
U. Colorado, Boulder, CO, USA;
Svetozar A. Zhekov
Affiliation:
Space Research and Technology Institute, Sofia, Bulgaria
Judith L. Racusin
Affiliation:
NASA/GSFC, Greenbelt, MD, USA
Eli Dwek
Affiliation:
NASA/GSFC, Greenbelt, MD, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

SN1987A is the best-studied core-collapse supernova in the sky. We know what the progenitor was, what the circumstellar environment was, and what the explosion looked like over a broad electromagnetic bandpass and in neutrinos. For over a decade, the Chandra X-ray Observatory has been monitoring SN1987A on a regular basis, obtaining resolved images of the developing interaction with the circumstellar material, as well as high resolution grating spectroscopy of the X-ray emission. We highlight the latest results from this campaign and discuss the overall picture of the remnant's structure that emerges from these observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bouchet, P., et al. 2006, ApJ, 650, 212CrossRefGoogle Scholar
Burrows, D. N., et al. 2000, ApJ, 543, L149CrossRefGoogle Scholar
Dewey, D. & Dwarkadas, V. V., et al. 2012, ApJ, submitted, arXiv 1111.5314Google Scholar
Dwek, E., et al. 2010, ApJ, 722, 425CrossRefGoogle Scholar
Graves, G. J. M., et al. 2005, ApJ, 629, 944CrossRefGoogle Scholar
Hirata, K., et al. 1987, Phys. Rev. Lett., 58, 1490CrossRefGoogle Scholar
Larsson, J., et al. 2011, Nature, 474, 484CrossRefGoogle Scholar
Lawrence, S. S., et al. 2000, ApJ, 537, L123CrossRefGoogle Scholar
Manchester, R., et al. 2005, ApJ, 628, L131CrossRefGoogle Scholar
Matsuura, M., et al. 2011, Science, 333, 6047Google Scholar
McCray, R. 1993, ARAA, 31, 175CrossRefGoogle Scholar
Panagia, N. 1999, in: Chu, Y.-H., Suntzeff, N., Hesser, J., & Bohlender, D. (eds.), New Views of the Magellanic Clouds, Proc. IAU Symposium No. 190, p. 549Google Scholar
Park, S., et al. 2011, ApJ, 733, L35CrossRefGoogle Scholar
Racusin, J. L., et al. 2009, ApJ, 703, 1752CrossRefGoogle Scholar
Zhekov, S. A., et al. 2009, ApJ, 692, 1190CrossRefGoogle Scholar
Zhekov, S. A., et al. 2010, MNRAS, 407, 1157CrossRefGoogle Scholar