Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:48:25.819Z Has data issue: false hasContentIssue false

SMA Spectral Line Survey of the Proto-Planetary Nebula CRL 618

Published online by Cambridge University Press:  30 December 2019

Nimesh A. Patel
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA
Carl Gottlieb
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA
Ken Young
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA
Tomasz Kaminski
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA
Michael McCarthy
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA
Karl Menten
Affiliation:
Max Planck Institute for Radio Astronomy, Bonn, Germany
Chin-Fei Lee
Affiliation:
Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan
Harshal Gupta
Affiliation:
National Science Foundation, Washington DC, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Carbon-rich Asymptotic Giant Branch (AGB) stars are major sources of gas and dust in the interstellar medium. During the brief (∼1000 yr) period in the evolution from AGB to the Planetary Nebula (PN) stage, the molecular composition evolves from mainly diatomic and small polyatomic species to more complex molecules. Using the Submillimeter Array (SMA), we have carried out a spectral line survey of CRL 618, covering a frequency range of 281.9 to 359.4 GHz. More than 1000 lines were detected in the ∼60 GHz range, most of them assigned to HC3N and c-C3H2, and their isotopologues. About 200 lines are unassigned. Lines of CO, HCO+, and CS show the fast outflow wings, while the majority of line emission arises from a compact region of ∼1” diameter. We have analyzed the lines of HC3N, c-C3H2, CH3CN, and their isotopologues with rotation temperature diagrams.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bachiller, R., Forveille, T., Huggins, P. J., et al. 1997, A&A, 324, 1123 Google Scholar
Cernicharo, J. 2004, ApJ 608, L41 CrossRefGoogle Scholar
Herpin, F., Goicoechea, J. R., Pardo, J. R., & Cernicharo, J. 2002, ApJ, 577, 961 CrossRefGoogle Scholar
Knapp, G. R., Sandell, G., & Robson, E. I. 1993, ApJSS, 88, 173 CrossRefGoogle Scholar
Lee, C.-F., Yang, C.-H., Sahai, R., & Sánchez Contreras, C. 2013, ApJ, 770, 153 CrossRefGoogle Scholar
Pardo, J. R., Cernicharo, J., Goicoechea, J. R., Guélin, M., & Asensio Ramos, A. 2007, ApJ, 661, 250 CrossRefGoogle Scholar
Patel, N. A., Young, K. H., Gottlieb, C. A., et al. 2011, ApJSS, 193, 17 CrossRefGoogle Scholar
Remijan, A. J., Wyrowski, F., Friedel, D. N., Meier, D. S., & Snyder, L. E. 2005, ApJ, 626, 233 CrossRefGoogle Scholar
Sánchez Contreras, C., Sahai, R., & Gil de Paz, A. 2002, ApJ, 578, 269 CrossRefGoogle Scholar
Tafoya, D., Loinard, L., Fonfra, J. P., et al. 2013, A&A, 556, A35 Google Scholar