Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T00:57:46.091Z Has data issue: false hasContentIssue false

The simulations of early kilonova emission from neutron star mergers

Published online by Cambridge University Press:  27 February 2023

Smaranika Banerjee
Affiliation:
Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan email: [email protected]
Masaomi Tanaka
Affiliation:
Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan email: [email protected]
Kyohei Kawaguchi
Affiliation:
Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582, Japan
Daiji Kato
Affiliation:
National Institute for Fusion Science, National Institutes of Natural Sciences, Department of Advanced Energy Engineering Science, Kyushu University, Oroshi-cho, Toki, Gifu 509-5292, Japan
Gediminas Gaigalas
Affiliation:
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the neutron-star mergers, the radioactive decay of freshly synthesized heavy elements produces emissions in the ultraviolet-optical-infrared range, producing a transient called kilonova. The observational properties of the kilonova depend on the bound-bound opacity of the heavy elements, which was largely unavailable for the conditionssuitable at an early time (t < day). In this article, I share some of our recent progress on modeling the early kilonova light curve, focusing on the atomic opacity calculation.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, PhRvL, 119, 161101 Google Scholar
Arcavi, I. 2018, ApJ letter, 855, L23 CrossRefGoogle Scholar
Banerjee, S., Tanaka, M., Kawaguchi, K., Kato, D., Gaigalas, G. 2020, ApJ, 901, 29 CrossRefGoogle Scholar
Bar-Shalom, A., Klapisch, M., Oreg, J. 2001, JQSRT, 71, 169 CrossRefGoogle Scholar
Bauswein, A., Baumgarte, T. W., Janka, H.T. 2013, Phys. Rev. Lett., 111, 131101 CrossRefGoogle Scholar
Brown, P. J., Breeveld, A. A., Holland, S., Kuin, P., et al. 2014, Ap&SS, 354, 89 Google Scholar
Coulter, D. A., Foley, R. J., Kilpatrick, C. D., et al. 2017, Science, 358, 1556 CrossRefGoogle Scholar
Evans, P. A., Cenko, S. B., Kennea, J. A., et al. 2017, Science, 358, 1565 CrossRefGoogle Scholar
Finstad, D., De, S., Brown, D.A., et al. 2018, ApJL, 860, L2 CrossRefGoogle Scholar
Kasen, D., Metzger, B., Barnes, J., Quataert, E., Ramirez-Ruiz. 2017, Nature, 551, 80 CrossRefGoogle Scholar
Kawaguchi, K., Shibata, M., Tanaka, M. 2020, ApJ, 889, 171 CrossRefGoogle Scholar
Lattimer, J. M., & Schramm, D. N. 1974, ApJL, 192, L145 CrossRefGoogle Scholar
Li, L. X. & Paczynski, B. 1998, ApJL, 507, L59 CrossRefGoogle Scholar
Metzger, B. D., Martnez-Pinedo, G., Darbha, S., et al. 2010, MNRAS, 406, 2650 CrossRefGoogle Scholar
Metzger, B. D., & Fernandez, R. 2014, MNRAS, 441, 3444 CrossRefGoogle Scholar
Miller, J. M., Ryan, B. R., Dolence, J. C., et al. 2019, Phys. Rev. D, 100, 023008 CrossRefGoogle Scholar
Piro, A. L., Kollmeier, J. A. 2018, ApJ, 855, 103 Google Scholar
Roming, P. W. A., Kennedy, T. E., Mason, K. O., et al. 2005, SSRv, 120, 95 Google Scholar
Sagiv, I., Gal-Yam, A., Ofek, E. O., et al. 2014, AJ, 147, 79 CrossRefGoogle Scholar
Shibata, M., Hotokezaka, K. 2019, Annu. Rev. Nucl. Part. Sci., 69, 41 CrossRefGoogle Scholar
Sobolev, V. V. 1960, Moving envelopes of stars CrossRefGoogle Scholar
Tanaka, M., Kato, D., Gaigalas, G., Kawaguchi, K., 2020, MNRAS, 496, 1369 CrossRefGoogle Scholar
Tanaka, M. & Hotokezaka, K. 2013, ApJ, 775, 113 CrossRefGoogle Scholar
Tanaka, M., Utsumi, Y., Mazzali, P. A., et al. 2017, PASJ, 69, 102 Google Scholar
Waxman, E., Ofek, E. O., Kushnir, D., Gal-Yam, A. 2018, MNRAS, 481, 3423 CrossRefGoogle Scholar