Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T07:22:52.341Z Has data issue: false hasContentIssue false

Simulation of disc-bulge-halo galaxies using parallel GPU based codes

Published online by Cambridge University Press:  07 March 2016

O. Veles
Affiliation:
Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680, Kyiv, Ukraine email: [email protected] Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120, Heidelberg, Germany
P. Berczik
Affiliation:
Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680, Kyiv, Ukraine email: [email protected] National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, 100012, Beijing, China Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120, Heidelberg, Germany
A. Just
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120, Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We compare the performance of the very popular Tree-GPU code BONSAI with the older Particle-(Multi)Mesh code SUPERBOX. Both code we run on a same hardware using the GPU acceleration for the force calculation. SUPERBOX is a particle-mesh code with high resolution sub-grid and a higher order NGP (nearest grid point) force-calculation scheme. In our research, we are aiming to demonstrate that the new parallel version of SUPERBOX is capable to do the high resolution simulations of the interaction of the system of disc-bulge-halo composed galaxy. We describe the improvement of performance and scalability of SUPERBOX particularly for the Kepler cluster (NVIDIA K20 GPU). A comparison was made with the very popular and publicly available Tree-GPU code BONSAI.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Berczik, P., Nitadori, K., Zhong, S., et al. 2011, in International conference on High Performance Computing Kyiv Ukraine, October 8-10, 2011., p. 8–18, 8–18Google Scholar
Berczik, P., Spurzem, R., Wang, L., Zhong, S., & Huang, S. 2013, in Third International Conference “High Performance Computing”, HPC-UA 2013, p. 52–59, 52–59Google Scholar
Bédorf, J., Gaburov, E., & Portegies Zwart, S.. Bonsai: A GPU Tree-Code. In Capuzzo-Dolcetta, R., Limongi, M., and Tornambè, A., editors, Advances in Computational Astrophysics: Methods, Tools, and Outcome, volume 453 of Astronomical Society of the Pacific Conference Series, page 325, July 2012.Google Scholar
Bien, R., Just, A., Berczik, P., & Berentzen, I.. High resolution in z-direction: The simulation of disc-bulge-halo galaxies using the particle-mesh code SUPERBOX. Astronomische Nachrichten, 329:1029, December 2008.Google Scholar
Fellhauer, M., Kroupa, P., Baumgardt, H., Bien, R., Boily, C. M., Spurzem, R., & Wassmer, N.. SUPERBOX - an efficient code for collisionless galactic dynamics. New A, 5:305326, September 2000.Google Scholar
Fellhauer, M., 2006, Superbox manual, Google Scholar
Harfst, S., Gualandris, A., Merritt, D., et al. 2007, New. Astr., 12, 357Google Scholar