Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T05:39:47.078Z Has data issue: false hasContentIssue false

Signatures of r-process elements in kilonova spectra

Published online by Cambridge University Press:  27 February 2023

Nanae Domoto
Affiliation:
Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan email: [email protected]
Masaomi Tanaka
Affiliation:
Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan email: [email protected]
Shinya Wanajo
Affiliation:
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako, Saitama 351-0198, Japan
Kyohei Kawaguchi
Affiliation:
Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582, Japan Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Binary neutron star (NS) mergers have been expected to synthesize r-process elements and cause electromagnetic radiation called kilonovae. Although r-process nucleosynthesis was confirmed by the observations of GW170817/AT2017gfo, individual elements have not been identified except for strontium. Toward identification of elements in kilonova spectra, we perform radiative transfer simulations in NS merger ejecta. We find that Sr II triplet lines appear in the spectrum, which is consistent with the absorption feature observed in GW170817/AT2017gfo. The synthetic spectrum also shows the strong Ca II triplet lines. Absence of the Ca II line features in GW170817/AT2017gfo implies that the Ca/Sr ratio is < 0.002 in mass fraction, which is consistent with nucleosynthesis for electron fraction ≥ 0.40 and entropy per nucleon (in units of Boltzmann constant) ≥ 25. Identification of absorption lines in near-infrared wavelengths which have not yet been decoded may lead to clarify the abundances synthesized in NS merger ejecta.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., Scientific Collaboration, LIGO & Collaboration, Virgo 2017, Phys. Rev. Lett., 119, 161101 CrossRefGoogle ScholarPubMed
Abbott, B. P., 2017, Ap. Lett., 848, L12 CrossRefGoogle Scholar
Eichler, D., Livio, M., Piran, T. & Schramm, D. N. 1989, Nature, 340, 126 CrossRefGoogle Scholar
Kawaguchi, K., Shibata, M. & Tanaka, M. 2018, Ap. Lett., 865, L21 Google Scholar
Li, Li-Xin & Paczyński, Bohdan 1998, Ap. Lett., 507, L59CrossRefGoogle Scholar
Pian, E., D’Avanzo, P., Benetti, S, Branchesi, M., 2017, Nature, 551, 67 CrossRefGoogle Scholar
Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W. & Jeffery, C. S. 1995, A&AS, 112, 525 Google Scholar
Prantzos, N., Abia, C., Cristallo, S., Limongi, M., & Chieffi, A. 2020, MNRAS, 491, 1832 Google Scholar
Tanaka, M. & Hotokezaka, K. 2013, ApJ, 775, 113 CrossRefGoogle Scholar
Tanaka, M., Hotokezaka, K., Kyutoku, K., Wanajo, S., Kicuchi, K., Sekiguchi, Y. & Shibata, M. 2014, ApJ, 780, 31 CrossRefGoogle Scholar
Tanaka, M., Kato, D., Gaigalas, G. & Kawaguchi, K. 2020, MNRAS, 496, 1369 CrossRefGoogle Scholar
Wanajo, S. 2018, ApJ, 868, 65 CrossRefGoogle Scholar
Watson, D., Hansen, C. J, Selsing, J., Koch, A., Malesani, D. B., 2018, Nature, 574, 497 Google Scholar