Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-05T04:22:49.841Z Has data issue: false hasContentIssue false

Short-lived radioisotopes in meteorites from Galactic-scale correlated star formation

Published online by Cambridge University Press:  13 January 2020

Yusuke Fujimoto
Affiliation:
Research School of Astronomy & Astrophysics, Australian National University, Canberra, Australian Capital Territory 2611, Australia email: [email protected]
Mark R. Krumholz
Affiliation:
Research School of Astronomy & Astrophysics, Australian National University, Canberra, Australian Capital Territory 2611, Australia email: [email protected]
Shogo Tachibana
Affiliation:
UTokyo Organization for Planetary and Space Science (UTOPS), The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Meteoritic evidence shows that the Solar system at birth contained significant quantities of short-lived radioisotopes (SLRs) such as 60Fe and 26Al produced in supernova explosions and in the Wolf-Rayet winds. Explaining how they travelled from these origin sites to the primitive Solar system before decaying is an outstanding problem. In this paper, we present a chemo-hydrodynamical simulation of the entire Milky Way to measure for the distribution of 60Fe/56Fe and 26Al/27Al ratios over all stars in the Galaxy. We show that the Solar abundance ratios are well within the normal range. We find that SLRs are abundant in newborn stars because star formation is correlated on Galactic scales, so that ejecta preferentially enrich atomic gas that will subsequently be accreted onto existing GMCs or will form new ones. Thus new generations of stars preferentially form in patches of the Galaxy contaminated by previous generations of stellar feedback.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Adams, F. C. 2010, ARAA, 48, 47 CrossRefGoogle Scholar
Boss, A. P., Keiser, S. A., Ipatov, S. I., Myhill, E. A., & Vanhala, H. A. T. 2010, ApJ, 708, 1268 CrossRefGoogle Scholar
Cameron, A. G. W., & Truran, J. W. 1977, Icarus, 30, 447 CrossRefGoogle Scholar
Chevalier, R. A. 2000, ApJ (Letters), 538, L151 Google Scholar
Fujimoto, Y., Krumholz, M. R., & Tachibana, S. 2018, MNRAS, 480, 4025 CrossRefGoogle Scholar
Gounelle, M., & Meynet, G. 2012, A&A, 545, A4 Google Scholar
Gritschneder, M., Lin, D. N. C., Murray, S. D., Yin, Q.-Z., & Gong, M.-N. 2012, ApJ, 745, 22 CrossRefGoogle Scholar
Huss, G. R., Meyer, B. S., Srinivasan, G., Goswami, J. N., & Sahijpal, S. 2009, Geochimica et Cosmochimica Acta, 73, 4922 CrossRefGoogle Scholar
Kuffmeier, M., Frostholm Mogensen, T., Haugbølle, T., Bizzarro, M., & Nordlund, Å. 2016, ApJ, 826, 22 CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., & Wasserburg, G. J. 1976, Geophysical Research (Letters), 3, 109 CrossRefGoogle Scholar
Mishra, R. K., & Goswami, J. N. 2014, Geochimica et Cosmochimica Acta, 132, 440 CrossRefGoogle Scholar
Ouellette, N., Desch, S. J., & Hester, J. J. 2010, ApJ, 711, 597 CrossRefGoogle Scholar
Tang, H., & Dauphas, N. 2012, Earth and Planetary Science (Letters), 359, 248 CrossRefGoogle Scholar
Telus, M., Huss, G. R., Nagashima, K., Ogliore, R. C., & Tachibana, S. 2018, Geochimica et Cosmochimica Acta, 221, 342 CrossRefGoogle Scholar
Young, E. D. 2014, Earth and Planetary Science (Letters), 392, 16 CrossRefGoogle Scholar