Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T02:07:39.300Z Has data issue: false hasContentIssue false

The Shining Future of UV Spectral Synthesis

Published online by Cambridge University Press:  13 April 2010

Anne Pellerin
Affiliation:
George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A&M University, College Station, TX 77843, USA emails: [email protected], [email protected]
Steven L. Finkelstein
Affiliation:
George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A&M University, College Station, TX 77843, USA emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the coming generation of instruments and telescopes capable of spectroscopy of high redshift galaxies, the spectral synthesis technique in the rest-frame UV and Far-UV range will become one of a few number of tools remaining to study their young stellar populations in detail. The rest-frame UV lines and continuum of high redshift galaxies, observed with visible and infrared telescopes on Earth, can be used for accurate line profile fitting such as Pvλλ1118, 1128, Ciiiλ1176, and Civλ1550. These lines are very precise diagnostic tools to estimate ages, metallicities, and masses of stellar populations.

Here we discuss the potential for spectral synthesis of rest-frame UV spectra obtained at the Keck telescope. As an example, we study the 8 o'clock arc, a lensed galaxy at z=2.7322. We show that the poor spectral type coverage of the actual UV empirical spectral libraries limits the age and metallicity diagnostic. In order to improve our knowledge of high redshift galaxies using spectral synthesis, UV stellar libraries need to be extended to obtain accurate age, metallicity, and mass estimates likely to be occuring in young stellar populations observed in the early universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Finkelstein, S. L., Rhoads, J. E.Malhotra, S., Grogin, N., & Wang, J. 2008, ApJ, 678, 655Google Scholar
Finkelstein, S. L., Papovich, C., Rudnick, G., Egami, E., LeFloc'h, E., Rieke, M. J., Rigby, J. R., & Willmer, C. N. A. 2009, ApJ, 700, 376CrossRefGoogle Scholar
Gronwall, C., et al. 2007, ApJ, 667, 79CrossRefGoogle Scholar
Leitherer, C., Robert, C., & Heckman, T. 1995, ApJS, 99, 173Google Scholar
Leitherer, C., et al. 1999, ApJS, 123, 3CrossRefGoogle Scholar
Neufeld, D. A. 1991, ApJL, 370, 85CrossRefGoogle Scholar
Pellerin, A. 2006, AJ, 131, 849Google Scholar
Pellerin, A., Fullerton, A. W., Robert, C., Howk, J. C., Hutchings, J. B., Walborn, N. R., Bianchi, L., Crowther, P. A., & Sonneborn, G. 2002, ApJS, 143, 159CrossRefGoogle Scholar
Pellerin, A. & Robert, C. 2007, MNRAS, 381, 228CrossRefGoogle Scholar
Rix., S. A., Pettini, M., Leitherer, C., Bresolin, F., & Kudritzki, R.-P. 2004, ApJ, 615, 98CrossRefGoogle Scholar
Robert, C., Leitherer, C., & Heckman, T. M. 1995, ApJ, 418, 749CrossRefGoogle Scholar
Robert, C., Pellerin, A., Aloisi, A., Leitherer, C., Hoopes, C., & Heckman, T. M. 2003, ApJS, 144, 21Google Scholar
Shapley, A. E., Steidel, C. C., Pettini, M., Adelberger, K. L., & Erb, D. K. 2006, ApJ, 651, 688Google Scholar
Verhamme, A., Schaerer, D., Atek, H., & Tapken, C. 2008, A&A, 491, 89Google Scholar