Article contents
Shaping the initial-final mass relation of white dwarfs with AGB outflows
Published online by Cambridge University Press: 30 November 2022
Abstract
A recent analysis of a few carbon-oxygen white dwarfs in old open clusters of the Milky Way (MW) identified a kink in the initial-final mass relation (IFMR), located over a range of initial masses, 1.65 ≲ Mi/M⊙ ≲ 2.10, which unexpectedly interrupts the commonly assumed monotonic trend. The proposed interpretation links this observational fact to the formation of carbon stars and the modest outflows (with mass loss rate < 10−7 M⊙/yr) that are expected as long as the carbon excess remains too low to produce dust grains in sufficient amount. Under these conditions the mass of the carbon-oxygen core can grow more than is generally predicted by stellar models. We discuss these new findings also in light of a new systematic follow-up investigation, based on Gaia EDR3, of evolved giants (13 carbon stars, 3 S stars and 4 M stars) belonging to intermediate-age open clusters.
Keywords
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 16 , Symposium S366: The Origin of Outflows in Evolved Stars , November 2020 , pp. 216 - 221
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union
References
- 1
- Cited by