Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T14:09:11.187Z Has data issue: false hasContentIssue false

Shaping of the Inner Solar System by the Gas-Driven Migration of Jupiter

Published online by Cambridge University Press:  29 April 2014

Kevin J. Walsh
Affiliation:
Southwest Research Institute1050 Walnut St. Suite 400, Boulder, CO, 80302, USA email: [email protected]
Alessando Morbidelli
Affiliation:
Obs. Côte d'Azur, Nice, France
Sean N. Raymond
Affiliation:
Lab. d'Astrophysique de Bordeaux, FloiracFrance
David P. O'Brien
Affiliation:
Planetary Science Institute, Tucson, AZ, USA
Avi M. Mandell
Affiliation:
NASA Goddard, Greenbelt, MD, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A persistent difficulty in terrestrial planet formation models is creating Mars analogs with the appropriate mass: Mars is typically an order of magnitude too large in simulations. Some recent work found that a small Mars can be created if the planetesimal disk from which the planets form has an outermost edge at 1.0 AU. However, that work and no previous work could produce a truncation of the planetesimal disk while also explaining the mass and structure of the asteroid belt. We show that gas-driven migration of Jupiter inward to 1.5 AU, before its subsequent outward migration, can truncate the disk and repopulate the asteroid belt. This dramatic migration history of Jupiter suggests that the dynamical behavior of our giant planets was more similar to that inferred for extra-solar planets than previously thought, as both have been characterised by substantial radial migration.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. 2002, Science, 297, 1678CrossRefGoogle Scholar
Armitage, P. J. 2007, The Astrophysical Journal, 665, 1381CrossRefGoogle Scholar
Batygin, K., Brown, M. E., & Betts, H. 2012, The Astrophysical Journal, 744, L3CrossRefGoogle Scholar
Bottke, W. F., Vokrouhlický, D., Minton, D., Nesvorný, D., Morbidelli, A., Brasser, R., Simonson, B., & Levison, H. F. 2012, Nature, 485, 78Google Scholar
Bouvier, A. & Wadhwa, M. 2010, Nature Geoscience, 3, 637Google Scholar
Burbine, T. H., McCoy, T. J., Meibom, A., Gladman, B., & Keil, K. 2002, Asteroids III, 653CrossRefGoogle Scholar
Bus, S. J. & Binzel, R. P. 2002, Icarus, 158, 146Google Scholar
Chapman, C. R., Cohen, B. A., & Grinspoon, D. H. 2007, Icarus, 189, 233CrossRefGoogle Scholar
Chambers, J. E. 2001, Icarus, 152, 205CrossRefGoogle Scholar
Ciesla, F. J. & Cuzzi, J. N. 2006, Icarus, 181, 178CrossRefGoogle Scholar
Dauphas, N. & Pourmand, A. 2011, Nature, 473, 489Google Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., & Bus, S. J. 2009, Icarus, 202, 160CrossRefGoogle Scholar
Garaud, P. & Lin, D. N. C. 2007, The Astrophysical Journal, 654, 606Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Nature, 435, 466CrossRefGoogle Scholar
Gradie, J. & Tedesco, E. 1982, Science, 216, 1405Google Scholar
Hansen, B. M. S. 2009, The Astrophysical Journal, 703, 1131Google Scholar
Kita, N. T., Huss, G. R., Tachibana, S., Amelin, Y., Nyquist, L. E., & Hutcheon, I. D. 2005, Chondrites and the Protoplanetary Disk, 341, 558Google Scholar
Kley, W. & Nelson, R. P. 2012, Annual Review of Astronomy and Astrophysics, 50, 211Google Scholar
Kleine, T., et al. 2009, Geochimica et Cosmochimica Acta, 73, 5150CrossRefGoogle Scholar
Lecar, M., Podolak, M., Sasselov, D., & Chiang, E. 2006, The Astrophysical Journal, 640, 1115Google Scholar
Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D., & Gomes, R. 2011, The Astronomical Journal, 142, 152Google Scholar
Lin, D. N. C. & Papaloizou, J. 1986, The Astrophysical Journal, 309, 846CrossRefGoogle Scholar
Lécuyer, C., Gillet, P., & Robert, F. 1998, The hydrogen isotope composition of seawater and the global water cycle, 145, 249Google Scholar
Marty, B. 2012, Earth and Planetary Science Letters, 313, 56CrossRefGoogle Scholar
Masset, F. & Snellgrove, M. 2001, Monthly Notices of the Royal Astronomical Society, 320, L55Google Scholar
Minton, D. A. & Malhotra, R. 2009, Nature, 457, 1109CrossRefGoogle Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R. 2005, Nature, 435, 462Google Scholar
Morbidelli, A. & Crida, A. 2007, Icarus, 191, 158Google Scholar
Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., & Gomes, R. 2007, The Astronomical Journal, 134, 1790Google Scholar
Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F., & Tsiganis, K. 2010, The Astronomical Journal, 140, 1391Google Scholar
Nesvorný, D., Vokrouhlický, D., & Morbidelli, A. 2007, The Astronomical Journal, 133, 1962CrossRefGoogle Scholar
Nesvorný, D. 2011, The Astrophysical Journal 742 L22CrossRefGoogle Scholar
Nesvorný, D. & Morbidelli, A. 2012, The Astronomical Journal, 144, 117Google Scholar
Nimmo, F. & Kleine, T. 2007, Icarus, 191, 497Google Scholar
O'Brien, D. P., Morbidelli, A., & Levison, H. F. 2006, Icarus, 184, 39Google Scholar
Pierens, A. & Nelson, R. P. 2008, Astronomy and Astrophysics, 482, 333CrossRefGoogle Scholar
Pierens, A. & Raymond, S. N. 2011, Astronomy and Astrophysics, 533, A131CrossRefGoogle Scholar
Raymond, S. N., O'Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009, Icarus, 203, 644Google Scholar
Tera, F., Papanastassiou, D. A., & Wasserburg, G. J. 1974, Earth and Planetary Science Letters, 22, 1CrossRefGoogle Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Nature 435, 459Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P., & Mandell, A. M. 2011, Nature, 475, 206Google Scholar
Ward, W. R. 1997, Icarus, 126, 261Google Scholar
Warren, P. H. 2011, LPI Contributions, 1639, 9027Google Scholar
Wetherill, G. W. 1978, IAU Colloq. 52: Protostars and Planets, 565Google Scholar