Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T14:30:19.049Z Has data issue: false hasContentIssue false

Shape estimation for Košice, Almahata Sitta and Bassikounou meteoroids

Published online by Cambridge University Press:  01 July 2015

Vladimir Vinnikov
Affiliation:
Dorodnicyn Computing Centre of the Russian Academy of Sciences, Department of Computational Physics, Vavilova ul. 40, 119333, Moscow, Russia email: [email protected]
Maria Gritsevich
Affiliation:
Dorodnicyn Computing Centre of the Russian Academy of Sciences, Department of Computational Physics, Vavilova ul. 40, 119333, Moscow, Russia email: [email protected] Finnish Geodetic Institute, P.O. Box 15, FI-02431 Masala, Finland; email: [email protected] Institute of Physics and Technology, Ural Federal University, Mira ul. 21, 620002, Ekaterinburg, Russia
Leonid Turchak
Affiliation:
Dorodnicyn Computing Centre of the Russian Academy of Sciences, Department of Computational Physics, Vavilova ul. 40, 119333, Moscow, Russia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is concerned with a meteoroid shape estimation technique based on statistical laws of distribution for fragment masses. The idea is derived from the experiments that show that brittle fracturing produces multiple fragments of size lesser than or equal to the least dimension of the body. The number of fragments depends on fragment masses as a power law with exponential cutoff. The scaling exponent essentially indicates the initial form of the fragmented body. We apply the technique of scaling analysis to the empirical data on the mass distributions for Košice, Almahata Sitta and Bassikounou meteorites.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Amitrano, D 2012, Eur. Phys. J. Spec. Top., 205, 199Google Scholar
Buhl, S. & Baermann, M. 2007, Niger Meteorite Recon, www.niger-meteorite-recon.deGoogle Scholar
Gritsevich, M. 2008, Sol. Syst. Res., 42, 372CrossRefGoogle Scholar
Gritsevich, M. & Koschny, D. 2011, Icarus, 212, 877CrossRefGoogle Scholar
Gritsevich, M., Vinnikov, V., Kohout, T., Tóth, J., Peltoniemi, J., Turchak, L., & Virtanen, J. 2014, Meteorit. Planet. Sci., 49, 328CrossRefGoogle Scholar
Lang, B. & Franaszczuk, K. 1986, Meteoritics, 21, 425Google Scholar
Nagahama, H. 1993, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30, 469CrossRefGoogle Scholar
Oddershede, L., Dimon, P., & Bohr, J. 1993, Phys. Rev. Lett., 71, 3107Google Scholar
Oddershede, L., Meibom, A., & Bohr, J. 1998, Europhys. Lett, 43, 598Google Scholar
Shaddad, M. H., Jenniskens, P., Numan, D., Kudoda, A. M., Elsir, S., Riyad, I. F., Ali, A. E., Alameen, M., Alameen, N. M., Eid, O., Osman, A. T., Abubaker, M. I., Yousif, M., Chesley, S. R., Chodas, P. W., Albers, J., Edwards, W. N., Brown, P. G., Kuiper, J., & Friedrich, J. M. 2010, Meteorit. Planet. Sci., 45, 1557CrossRefGoogle Scholar
Spurny, P., Oberst, J., & Heinlein, D. 2003, Nature, 423, 151CrossRefGoogle Scholar