No CrossRef data available.
Article contents
A shallow water analogue of asymmetric core-collapse, and neutron star kick/spin
Published online by Cambridge University Press: 05 September 2012
Abstract
Massive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 7 , Symposium S279: Death of Massive Stars: Supernovae and Gamma-Ray Bursts , April 2011 , pp. 134 - 137
- Copyright
- Copyright © International Astronomical Union 2012