Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T07:56:44.639Z Has data issue: false hasContentIssue false

Scientific Potential of MeV Polarimetry for Relativistic Jets

Published online by Cambridge University Press:  11 September 2023

Haocheng Zhang*
Affiliation:
NASA Postdoc Program Fellow [email protected] NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract

Relativistic jets from supermassive black holes or stellar mass black holes are among the most powerful astrophysical phenomena. Magnetic field plays an important role in the jet launching and propagation, as well as particle acceleration and radiation. Polarimetry is the only way to observe the magnetic field evolution. The recent launch of the Imaging X-ray Polarimetry Explorer (IXPE) has opened up the X-ray polarization window, which has revealed very interesting phenomena for relativistic jets. However, the field of MeV gamma-ray polarimetry remains largely unexplored. This paper aims to summarize key scientific potentials for MeV polarimetry for blazars and gamma-ray bursts (GRBs) from recent theoretical modeling. These predictions, which are closely related to the cosmic ray acceleration, neutrino production, radiation mechanism, and the jet evolution, can be examined by future MeV polarimeters, such as the Compton Spectrometer and Imager (COSI), the LargE Area burst Polarimeter (LEAP), and the All-sky Medium-Energy Gamma-ray Observatory eXplorer (AMEGO-X).

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, ApJ, 848, L13. doi: 10.3847/2041-8213/aa920c CrossRefGoogle Scholar
Abdo, A. A., Ackermann, M., Agudo, I., et al. 2010, ApJ, 716, 30. doi: 10.1088/0004-637X/716/1/30 CrossRefGoogle Scholar
Abdollahi, S., Acero, F., Ackermann, M., et al. 2020, ApJS, 247, 33. doi: 10.3847/1538-4365/ab6bcb CrossRefGoogle Scholar
Aharonian, F. A. 2000, New Astron., 5, 377. doi: 10.1016/S1384-1076(00)00039-7 CrossRefGoogle Scholar
Ajello, M., Angioni, R., Axelsson, M., et al. 2020, ApJ, 892, 105. doi: 10.3847/1538-4357/ab791e CrossRefGoogle Scholar
Aliu, E., Archambault, S., Archer, A., et al. 2016, A&A, 594, A76. doi: 10.1051/0004-6361/201628744 Google Scholar
Beloborodov, A. M. 2010, MNRAS, 407, 1033. doi: 10.1111/j.1365-2966.2010.16770.x CrossRefGoogle Scholar
Blinov, D., Pavlidou, V., Papadakis, I., et al. 2015, MNRAS, 453, 1669. doi: 10.1093/mnras/stv1723 CrossRefGoogle Scholar
Blinov, D., Pavlidou, V., Papadakis, I., et al. 2018, MNRAS, 474, 1296. doi: 10.1093/mnras/stx2786 CrossRefGoogle Scholar
Bonometto, S., Cazzola, P., & Saggion, A. 1970, A&A, 7, 292 Google Scholar
Bonometto, S. & Saggion, A. 1973, A&A, 23, 9 Google Scholar
Böttcher, M., Reimer, A., Sweeney, K., et al. 2013, ApJ, 768, 54. doi: 10.1088/0004-637X/768/1/54 CrossRefGoogle Scholar
Böttcher, M. 2019, Galaxies, 7, 20. doi: 10.3390/galaxies7010020 CrossRefGoogle Scholar
Caputo, R., Ajello, M., Kierans, C. A., et al. 2022, Journal of Astronomical Telescopes, Instruments, and Systems, 8, 044003. doi: 10.1117/1.JATIS.8.4.044003 CrossRefGoogle Scholar
Cerruti, M., Zech, A., Boisson, C., et al. 2015, MNRAS, 448, 910. doi: 10.1093/mnras/stu2691 CrossRefGoogle Scholar
Chen, X., Chatterjee, R., Zhang, H., et al. 2014, MNRAS, 441, 2188. doi: 10.1093/mnras/stu713 CrossRefGoogle Scholar
Deng, W., Zhang, H., Zhang, B., et al. 2016, ApJ, 821, L12. doi: 10.3847/2041-8205/821/1/L12 CrossRefGoogle Scholar
Dermer, C. D., Schlickeiser, R., & Mastichiadis, A. 1992, A&A, 256, L27 Google Scholar
Diltz, C., Böttcher, M., & Fossati, G. 2015, ApJ, 802, 133. doi: 10.1088/0004-637X/802/2/133 CrossRefGoogle Scholar
Ghisellini, G. & Madau, P. 1996, MNRAS, 280, 67. doi: 10.1093/mnras/280.1.67 CrossRefGoogle Scholar
Giannios, D. & Uzdensky, D. A. 2019, MNRAS, 484, 1378. doi: 10.1093/mnras/stz082 Google Scholar
Gill, R., Granot, J., & Kumar, P. 2020, MNRAS, 491, 3343. doi: 10.1093/mnras/stz2976 CrossRefGoogle Scholar
Gill, R. & Granot, J. 2021, MNRAS, 504, 1939. doi: 10.1093/mnras/stab1013 CrossRefGoogle Scholar
Goldstein, A., Veres, P., Burns, E., et al. 2017, ApJ, 848, L14. doi: 10.3847/2041-8213/aa8f41 CrossRefGoogle Scholar
Hjorth, J., Sollerman, J., Møller, P., et al. 2003, Nature, 423, 847. doi: 10.1038/nature01750 CrossRefGoogle Scholar
Hulsman, J. 2020, Proc. SPIE, 11444, 114442V. doi: 10.1117/12.2559374 Google Scholar
IceCube Collaboration, Aartsen, M. G., Ackermann, M., et al. 2018, Science, 361, eaat1378. doi: 10.1126/science.aat1378 Google Scholar
Jorstad, S. G., Marscher, A. P., Raiteri, C. M., et al. 2022, Nature, 609, 265. doi: 10.1038/s41586-022-05038-9 CrossRefGoogle Scholar
Krawczynski, H. 2012, ApJ, 744, 30. doi: 10.1088/0004-637X/744/1/30 CrossRefGoogle Scholar
Larionov, V. M., Jorstad, S. G., Marscher, A. P., et al. 2013, ApJ, 768, 40. doi: 10.1088/0004-637X/768/1/40 CrossRefGoogle Scholar
Li, H. & Kusunose, M. 2000, ApJ, 536, 729. doi: 10.1086/308960 CrossRefGoogle Scholar
MacFadyen, A. I., Woosley, S. E., & Heger, A. 2001, ApJ, 550, 410. doi: 10.1086/319698 CrossRefGoogle Scholar
Mannheim, K. 1993, A&A, 269, 67. doi: 10.48550/arXiv.astro-ph/9302006 Google Scholar
Maraschi, L., Ghisellini, G., & Celotti, A. 1992, ApJ, 397, L5. doi: 10.1086/186531 CrossRefGoogle Scholar
Marscher, A. P. & Gear, W. K. 1985, ApJ, 298, 114. doi: 10.1086/163592 CrossRefGoogle Scholar
Marscher, A. P., Jorstad, S. G., Larionov, V. M., et al. 2010, ApJ, 710, L126. doi: 10.1088/2041-8205/710/2/L126 CrossRefGoogle Scholar
Morozova, D. A., Larionov, V. M., Troitsky, I. S., et al. 2014, AJ, 148, 42. doi: 10.1088/0004-6256/148/3/42 CrossRefGoogle Scholar
McConnell, M. L., Baring, M., Bloser, P., et al. 2021, Proc. SPIE, 11821, 118210P. doi: 10.1117/12.2594737 Google Scholar
Mücke, A., Protheroe, R. J., Engel, R., et al. 2003, Astroparticle Physics, 18, 593. doi: 10.1016/S0927-6505(02)00185-8 CrossRefGoogle Scholar
Paliya, V. S., Zhang, H., Böttcher, M., et al. 2018, ApJ, 863, 98. doi: 10.3847/1538-4357/aad1f0 CrossRefGoogle Scholar
Parsotan, T. & Lazzati, D. 2022, ApJ, 926, 104. doi: 10.3847/1538-4357/ac4093 CrossRefGoogle Scholar
Pe’er, A., Mészáros, P., & Rees, M. J. 2006, ApJ, 642, 995. doi: 10.1086/501424 CrossRefGoogle Scholar
Peirson, A. L., Liodakis, I., & Romani, R. W. 2022, ApJ, 931, 59. doi: 10.3847/1538-4357/ac6a54 CrossRefGoogle Scholar
Petropoulou, M., Dimitrakoudis, S., Padovani, P., et al. 2015, MNRAS, 448, 2412. doi: 10.1093/mnras/stv179 CrossRefGoogle Scholar
Pushkarev, A. B., Gabuzda, D. C., Vetukhnovskaya, Y. N., et al. 2005, MNRAS, 356, 859. doi: 10.1111/j.1365-2966.2004.08535.x CrossRefGoogle Scholar
Rees, M. J. & Meszaros, P. 1994, ApJ, 430, L93. doi: 10.1086/187446 CrossRefGoogle Scholar
Rees, M. J. & Mészáros, P. 2005, ApJ, 628, 847. doi: 10.1086/430818 CrossRefGoogle Scholar
Rybicki, G. B. & Lightman, A. P. 1986, Radiative Processes in Astrophysics, by George B. Rybicki, Alan P. Lightman, pp. 400. ISBN 0-471-82759-2. Wiley-VCH, June 1986., 400Google Scholar
Sahu, S., Oliveros, A. F. O., & Sanabria, J. C. 2013, Phys. Rev. D, 87, 103015. doi: 10.1103/PhysRevD.87.103015 CrossRefGoogle Scholar
Sikora, M., Begelman, M. C., & Rees, M. J. 1994, ApJ, 421, 153. doi: 10.1086/173633 CrossRefGoogle Scholar
Toma, K., Sakamoto, T., Zhang, B., et al. 2009, ApJ, 698, 1042. doi: 10.1088/0004-637X/698/2/1042 CrossRefGoogle Scholar
Yang, C.-Y., Lowell, A., Zoglauer, A., et al. 2018, Proc. SPIE, 10699, 106992K. doi: 10.1117/12.2312556 Google Scholar
Yonetoku, D., Murakami, T., Gunji, S., et al. 2011, ApJ, 743, L30. doi: 10.1088/2041-8205/743/2/L30 CrossRefGoogle Scholar
Zhang, B. & Yan, H. 2011, ApJ, 726, 90. doi: 10.1088/0004-637X/726/2/90 CrossRefGoogle Scholar
Zhang, H. & Böttcher, M. 2013, ApJ, 774, 18. doi: 10.1088/0004-637X/774/1/18 CrossRefGoogle Scholar
Zhang, H., Chen, X., Böttcher, M., et al. 2015, ApJ, 804, 58. doi: 10.1088/0004-637X/804/1/58 CrossRefGoogle Scholar
Zhang, H., Diltz, C., & Böttcher, M. 2016, ApJ, 829, 69. doi: 10.3847/0004-637X/829/2/69 CrossRefGoogle Scholar
Zhang, H., Fang, K., Li, H., et al. 2019, ApJ, 876, 109. doi: 10.3847/1538-4357/ab158d CrossRefGoogle Scholar
Zhang, H. 2019, Galaxies, 7, 85. doi: 10.3390/galaxies7040085 CrossRefGoogle Scholar
Zhang, H., Li, X., Giannios, D., et al. 2021, ApJ, 912, 129. doi: 10.3847/1538-4357/abf2be CrossRefGoogle Scholar
Zhang, H., Li, X., Giannios, D., et al. 2022, ApJ, 924, 90. doi: 10.3847/1538-4357/ac3669 CrossRefGoogle Scholar