Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:45:39.518Z Has data issue: false hasContentIssue false

Scaling laws to understand tidal dissipation in fluid planetary layers and stars

Published online by Cambridge University Press:  05 January 2015

Pierre Auclair-Desrotour
Affiliation:
IMCCE, Observatoire de Paris, CNRS UMR 8028, 77 Avenue Denfert-Rochereau, 75014 Paris, France email: [email protected] Laboratoire AIM Paris-Saclay, CEA/DSM - CNRS - Université Paris Diderot, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, France email: [email protected]
Stéphane Mathis
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/DSM - CNRS - Université Paris Diderot, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, France email: [email protected] LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France
Christophe Le Poncin-Lafitte
Affiliation:
SYRTE, Observatoire de Paris, CNRS UMR 8630, UPMC, 61 Avenue de l'Observatoire, 75014 Paris, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tidal dissipation is known as one of the main drivers of the secular evolution of planetary systems. It directly results from dissipative mechanisms that occur in planets and stars' interiors and strongly depends on the structure and dynamics of the bodies. This work focuses on the mechanism of viscous friction in stars and planetary layers. A local model is used to study tidal dissipation. It provides general scaling laws that give a qualitative overview of the different possible behaviors of fluid tidal waves. Furthermore, it highlights the sensitivity of dissipation to the tidal frequency and the roles played by the internal parameters of the fluid such as rotation, stratification, viscosity and thermal diffusivity that will impact the spins/orbital architecture in planetary systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Auclair-Desrotour, P., Le Poncin-Lafitte, C., & Mathis, S. 2014, A&A, 561, L7Google Scholar
Efroimsky, M. & Lainey, V. 2007, Journal of Geophysical Research (Planets), 112, 12003Google Scholar
Goldreich, P. & Soter, S. 1966, Icarus, 5, 375Google Scholar
Jouve, L. & Ogilvie, G. I. 2014, Journal of Fluid Mechanics, 745, 223Google Scholar
Lord, Kelvin 1863, Phil. Trans. Roy. Soc. London, Treatise on Natural Philosophy, 2, 837Google Scholar
Love, A. E. H. 1911, Some Problems of Geodynamics, Publisher: Cambridge University PressGoogle Scholar
Ogilvie, G. I. 2005, Journal of Fluid Mechanics, 543, 19CrossRefGoogle Scholar
Ogilvie, G. I. & Lin, D. N. C. 2004, ApJ, 610, 477Google Scholar
Ogilvie, G. I. & Lin, D. N. C. 2007, ApJ, 661, 1180Google Scholar
Remus, F., Mathis, S., & Zahn, J.-P. 2012, A&A, 544, A132Google Scholar