Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T17:25:42.973Z Has data issue: false hasContentIssue false

Rotation & differential rotation of the active Kepler stars

Published online by Cambridge University Press:  07 August 2014

Timo Reinhold
Affiliation:
Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany email: [email protected]
Ansgar Reiners
Affiliation:
Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany email: [email protected]
Gibor Basri
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar rotation is a well-known quantity for tens of thousands of stars. In contrast, differential rotation (DR) is only known for a handful of stars because DR cannot be measured directly. We present rotation periods for more than 24,000 active stars in the Kepler field. Thereof, more than 18,000 stars show a second period, which we attribute to surface differential rotation. Our rotation periods are consistent with previous measurements and the theory of magnetic braking. Our results on DR paint a rather different picture: The temperature dependence of the absolute shear δΩ is split into two groups separated around 6000 K. For the cooler stars δΩ only slightly increases with temperature, whereas stars hotter than 6000 K show large scatter. This is the first time that DR has been measured for such a large number of stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Ammler-von Eiff, M. & Reiners, A. 2012, A&A, 542, A116Google Scholar
Baliunas, S., Sokoloff, D., & Soon, W. 1996, ApJ, 457, L99Google Scholar
Barnes, J. R., Collier Cameron, A., Donati, J.-F., James, D. J., Marsden, S. C., & Petit, P. 2005, MNRAS, 357, L1Google Scholar
Barnes, S. A. 2007, ApJ, 669, 1167Google Scholar
Basri, G., Walkowicz, L. M., Batalha, N., Gilliland, R. L., Jenkins, J., Borucki, W. J., Koch, D., Caldwell, D., Dupree, A. K., Latham, D. W., Meibom, S., Howell, S., & Brown, T. 2010, ApJ, 713, L155Google Scholar
Basri, G., Walkowicz, L. M., Batalha, N., Gilliland, R. L., Jenkins, J., Borucki, W. J., Koch, D., Caldwell, D., Dupree, A. K., Latham, D. W., Marcy, G. W., Meibom, S., & Brown, T. 2011, AJ, 141, 20Google Scholar
Collier Cameron, A. 2007, AN, 328, 1030Google Scholar
Irwin, J., Berta, Z. K., Burke, C. J., Charbonneau, D., Nutzman, P., West, A. A., & Falco, E. E. 2011, ApJ, 727, 56Google Scholar
Kiraga, M. & Stepien, K. 2007, Acta Astron., 57, 149Google Scholar
Küker, M. & Rüdiger, G. 2011, AN, 332, 933Google Scholar
McQuillan, A., Aigrain, S., & Mazeh, T. 2013, MNRAS, 432, 1203CrossRefGoogle Scholar
Reinhold, T. & Reiners, A. 2013, A&A, 557, A11Google Scholar
Reinhold, T., Reiners, A., & Basri, G. 2013, ArXiv e-printsGoogle Scholar