Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T02:42:53.628Z Has data issue: false hasContentIssue false

The Role of Quasars in Galaxy Formation

Published online by Cambridge University Press:  03 June 2010

D. Elbaz*
Affiliation:
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d'Astrophysique, Bât.709, CEA-Saclay, 91191 Gif-sur-Yvette Cédex, France Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss evidence that quasars, and more generally radio jets, may have played an active role in the formation stage of galaxies by inducing star formation, i.e., through positive feedback. This mechanism first proposed in the 1970s has been considered as anecdotal until now, contrary to the opposite effect that is generally put forward, i.e., the quenching of star formation in massive galaxies to explain the galaxy bimodality, downsizing, and the universal black hole mass over bulge stellar mass ratio. This suggestion is based on the recent discovery of an ultra-luminous infrared galaxy, i.e., an extreme starburst, that appears to be triggered by a radio jet from the QSO HE 0450-2958 at z = 0.2863, together with the finding in several systems of a positional offset between molecular gas and quasars, which may be explained by the positive feedback effect of radio jets on their local environment.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bicknell, G. V., et al. 2000, ApJ, 540, 678CrossRefGoogle Scholar
Blanco, V. M., Graham, J. A., Lasker, B. M., & Osmer, P. S. 1975, ApJ, 198, L63CrossRefGoogle Scholar
Canalizo, G. & Stockton, A. 2001, ApJ, 555, 719CrossRefGoogle Scholar
Carilli, C. L., et al. 2002, AJ, 123, 1838CrossRefGoogle Scholar
Cattaneo, A., et al. 2009, Nature, 460, 213CrossRefGoogle Scholar
Chary, R. R. & Elbaz, D. 2001, ApJ, 556, 562CrossRefGoogle Scholar
Clements, D. L., et al. 2009, ApJ, 698, L188CrossRefGoogle Scholar
Croft, S., et al. 2006, ApJ, 647, 1040CrossRefGoogle Scholar
de Grijp, M. H. K., Lub, J., & Miley, G. K. 1987, A&AS, 70, 95Google Scholar
Dey, A. & Spinrad, H. 1996, ApJ, 459, 133CrossRefGoogle Scholar
Dey, A., Van Breugel, W., Vacca, W. D., & Antonucci, R. 1997, ApJ, 490, 698CrossRefGoogle Scholar
Dickson, R., Tadhunter, C., Shaw, M., Clark, N., & Morganti, R. 1995, MNRAS, 237, L29CrossRefGoogle Scholar
Elbaz, D., Jahnke, K., Pantin, E., Le Borgne, D., & Letawe, G. 2009, A&A 507, 1359Google Scholar
Elvis, M., et al. 1994, ApJS, 95, 1CrossRefGoogle Scholar
Fanarof, B. L. & Riley, J. M. 1974, MNRAS, 167, 31CrossRefGoogle Scholar
Feain, I. J., Papadopoulos, P. P., Ekers, R. D., & Middelberg, E. 2007, ApJ, 662, 872CrossRefGoogle Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9CrossRefGoogle Scholar
Ferrarese, L., et al. 2006, ApJ, 644, 21CrossRefGoogle Scholar
Fragile, P. C., Murray, S. D., Anninos, P., & van Breugel, W. 2004, ApJ, 604, 74CrossRefGoogle Scholar
Fu, H. & Stockton, A. 2008, ApJ, 677, 79CrossRefGoogle Scholar
Gebhardt, K., et al. 2000, ApJ, 539, L13CrossRefGoogle Scholar
Jahnke, K., et al. 2009, ApJ, 700, 1820CrossRefGoogle Scholar
Kennicutt, R. C. Jr., 1998, ARAA, 36, 189CrossRefGoogle Scholar
Klamer, I. J., Ekers, R. D., Sadler, E. M., & Hunstead, R. W. 2004, ApJ, 612, L100CrossRefGoogle Scholar
Kormendy, J. & Richstone, D. 1995, ARAA, 33, 581CrossRefGoogle Scholar
Kormendy, J. & Gebhardt, K. 2001, in Relativistic Astrophysics, ed. Martel, H. & Wheeler, J. C., (New York: AIP), p. 363Google Scholar
Letawe, G., Magain, P., & Courbin, F. 2008a, A&A, 480, 69Google Scholar
Letawe, Y., Magain, P., Letawe, G., Courbin, F., & Hutsemékers, D. 2008b, ApJ, 679, 983CrossRefGoogle Scholar
Li, C., Kauffmann, G., Heckman, T. M., White, S. D. M., & Ping, Y. P. 2008, MNRAS, 385, 1915CrossRefGoogle Scholar
Low, F. J., Cutri, R. M., Huchra, J. P., & Kleinmann, S. G. 1988, ApJ, 340, L1CrossRefGoogle Scholar
Magain, P., et al. 2005, Nature, 437, 381CrossRefGoogle Scholar
Magorrian, J., et al. 1998, AJ, 115, 2285CrossRefGoogle Scholar
Marconi, A. & Hunt, L.K. 2003, ApJ, 589, L21CrossRefGoogle Scholar
McCarthy, P. J., Van Breugel, W., Spinrad, H., & Djorgovski, S. 1987, ApJ, 321, L29CrossRefGoogle Scholar
McLure, R. J. & Dunlop, J. S. 2001, MNRAS, 327, 199CrossRefGoogle Scholar
McLure, R. J. & Dunlop, J. S. 2002, MNRAS, 331, 795CrossRefGoogle Scholar
Nesvadba, N. P. H., et al. 2009, MNRAS, 395, L16CrossRefGoogle Scholar
Omont, A., et al. 1996, Nature, 382, 428CrossRefGoogle Scholar
Ooosterloo, T. A. & Morganti, R. 2005, A&A, 429, 469Google Scholar
Papadopoulos, P. P., Feain, I. J., Wagg, J., & Wilner, D. J. 2008, ApJ, 684, 845CrossRefGoogle Scholar
Rees, M. J. 1989, MNRAS 239, 1CrossRefGoogle Scholar
Rejkuba, M., Minniti, D., Courbin, F., & Silva, D. R. 2002, ApJ, 564, 688CrossRefGoogle Scholar
Rodriguez, L. F. & Mirabel, I. F. 1998, A&A 340, L47Google Scholar
Sanders, D., et al. 1988, ApJ, 325, 74CrossRefGoogle Scholar
Stockton, A. & MacKenty, J. W. 1983, Nature, 305, 678CrossRefGoogle Scholar
Tadhunter, C. 2007, New Astron. Rev., 51, 153CrossRefGoogle Scholar
Thomas, D., Maraston, C., Bender, R., & Mendes de Oliveira, C. 2005, ApJ, 621, 673CrossRefGoogle Scholar
Van Breugel, W., Filippenko, A. V., Heckman, T., & Miley, G. 1985, ApJ, 293, 83CrossRefGoogle Scholar
Willott, C. J., Rawlings, S., Blundell, K. M., Lacy, M., & Eales, S. A. 2001, MNRAS, 322, 536CrossRefGoogle Scholar
Willott, C. J., Martínez-Sangre, A., & Rawlings, S. 2007, ApJ, 133, 564CrossRefGoogle Scholar
Zirm, A. W., et al. 2005, ApJ, 630, 68CrossRefGoogle Scholar