Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T01:14:33.320Z Has data issue: false hasContentIssue false

Role of Longitudinal Waves in Alfvén-wave-driven Solar/Stellar Wind

Published online by Cambridge University Press:  16 August 2023

Kimihiko Shimizu
Affiliation:
School of Arts & Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
Munehito Shoda
Affiliation:
Department of Earth and Planetary Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-0033, Japan
Takeru K. Suzuki
Affiliation:
School of Arts & Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan Department of Astronomy, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-0033, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the role the the p-mode-like vertical oscillation on the photosphere in driving solar winds in the framework of Alfvén-wave-driven winds. By performing one-dimensional magnetohydrodynamical numerical simulations from the photosphere to the interplanetary space, we discover that the mass-loss rate is raised up to ≈ 4 times as the amplitude of longitudinal perturbations at the photosphere increases. When the longitudinal fluctuation is added, transverse waves are generated by the mode conversion from longitudinal waves in the chromosphere, which increases Alfvénic Poynting flux in the corona. As a result, the coronal heating is enhanced to yield higher coronal density by the chromospheric evaporation, leading to the increase of the mass-loss rate. Our findings clearly show the importance of the p-mode oscillation in the photosphere and the mode conversion in the chromosphere in determining the basic properties of the wind from the sun and solar-type stars.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Belcher, J. W. 1971, ApJ, 168, 509 10.1086/151105CrossRefGoogle Scholar
Cally, P. S. & Goossens, M. 2008, Sol.Phys., 251, 251 Google Scholar
Cally, P. S. & Hansen, S. C. 2011, ApJ, 738, 119 Google Scholar
Cranmer, S. R. & Saar, S. H. 2011, ApJ, 741, 54 Google Scholar
Cranmer, S. R., van Ballegooijen, A. A., & Edgar, R. J. 2007, ApJ Suppl., 171, 520 10.1086/518001CrossRefGoogle Scholar
Fludra, A., Del Zanna, G., & Bromage, B. J. I. 1999, SSRv, 87, 185 10.1007/978-94-015-9167-6_24CrossRefGoogle Scholar
Goldreich, P. & Sridhar, S. 1995, ApJ, 438, 763 10.1086/175121CrossRefGoogle Scholar
Lighthill, M. J. 1952, Proceedings of the Royal Society of London Series A, 211, 564 10.1098/rspa.1952.0060CrossRefGoogle Scholar
Matsumoto, T. 2021, MNRAS, 500, 4779 10.1093/mnras/staa3533CrossRefGoogle Scholar
Matsumoto, T. & Suzuki, T. K. 2012, ApJ, 749, 8 10.1088/0004-637X/749/1/8CrossRefGoogle Scholar
Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J., & Dmitruk, P. 1999, ApJ Letters, 523, L93 10.1086/312259CrossRefGoogle Scholar
Morton, R. J., Weberg, M. J., & McLaughlin, J. A. 2019, Nature Astronomy, 3, 223 10.1038/s41550-018-0668-9CrossRefGoogle Scholar
Saito, K., Makita, M., Nishi, K., & Hata, S. 1970, Annals of the Tokyo Astronomical Observatory, 12, 51 Google Scholar
Sakaue, T. & Shibata, K. 2021, ApJ Letters, 906, L13 10.3847/2041-8213/abd3a9CrossRefGoogle Scholar
Schunker, H. & Cally, P. S. 2006, MNRAS, 372, 551 10.1111/j.1365-2966.2006.10855.xCrossRefGoogle Scholar
Shimizu, K., Shoda, M., & Suzuki, T. K. 2022, ApJ, 931, 37 10.3847/1538-4357/ac66d7CrossRefGoogle Scholar
Shoda, M., Suzuki, T. K., Asgari-Targhi, M., & Yokoyama, T. 2019, ApJ Letters, 880, L2 Google Scholar
Shoda, M., Yokoyama, T., & Suzuki, T. K. 2018, ApJ, 853, 190 Google Scholar
Stein, R. F. & Schwartz, R. A. 1972, ApJ, 177, 807 10.1086/151757CrossRefGoogle Scholar
Stepien, K. 1988, ApJ, 335, 892 10.1086/166975CrossRefGoogle Scholar
Suzuki, T. K. & Inutsuka, S.-i. 2005, ApJ Letters, 632, L49Google Scholar
Suzuki, T. K. & Inutsuka, S.-I. 2006, Journal of Geophysical Research (Space Physics), 111, A06101 10.1029/2005JA011502CrossRefGoogle Scholar
Teriaca, L., Poletto, G., Romoli, M., & Biesecker, D. A. 2003, ApJ, 588, 566 Google Scholar
Verdini, A. & Velli, M. 2007, ApJ, 662, 669 10.1086/510710CrossRefGoogle Scholar
Vidotto, A. A. 2021, Living Reviews in Solar Physics, 18, 3 Google Scholar
Wilhelm, K., Marsch, E., Dwivedi, B. N., et al. 1998, ApJ, 500, 1023 10.1086/305756CrossRefGoogle Scholar
Zangrilli, L., Poletto, G., Nicolosi, P., Noci, G., & Romoli, M. 2002, ApJ, 574, 477 Google Scholar