Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T12:14:59.769Z Has data issue: false hasContentIssue false

The role of LoBALs in quasar evolution

Published online by Cambridge University Press:  29 January 2021

Clare Wethers
Affiliation:
Finnish Centre for Astronomy with ESO (FINCA) Vesilinnantie 5, FI-20014, University of Turku, Finland email: [email protected]
Jari Kotilainen
Affiliation:
Finnish Centre for Astronomy with ESO (FINCA) Vesilinnantie 5, FI-20014, University of Turku, Finland email: [email protected] Department of Physics and Astronomy Vesilinnantie 5, FI-20014, University of Turku, Finland
Malte Schramm
Affiliation:
National Astronomical Observatory of JapanMitaka, Tokyo 181-8588, Japan
Andreas Schulze
Affiliation:
National Astronomical Observatory of JapanMitaka, Tokyo 181-8588, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Broad absorption line quasars (BALs) represent an interesting yet poorly understood population of quasars showing direct evidence for feedback processes via powerful outflows. Whilst an orientation model appears sufficient in explaining the sub-population of high-ionisation BALs (HiBALs), low-ionisation BALs (LoBALs) may instead represent an evolutionary phase, in which LoBALs exist in a short-lived phase following a merger-driven starburst. Throughout this work, we test this evolutionary picture of LoBALs by comparing the FIR detection rates, SFRs and environments for a sample of 12 LoBALs to other quasar populations at 2.0 < z < 2.5, making use of archival Herschel SPIRE data. We find the LoBAL detection rate to exceed that of both HiBALs and non-BALs, indicating a potential enhancement in their SFRs. Indeed, we also find direct evidence for high SFRs (>750 Mȯyr−1) within our sample which may be consistent with an evolutionary paradigm.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Allen, J. T., Hewett, P. C., Maddox, N., et al. 2011, VizieR Online Data Catalog, 741Google Scholar
Boroson, T. A. & Meyers, K. A. 1992, ApJ, 397, 44210.1086/171800CrossRefGoogle Scholar
Canalizo, G. & Stockton, A. 2001, ApJ, 555, 71910.1086/321520CrossRefGoogle Scholar
Cao Orjales, J. M., Stevens, J. A., Jarvis, M. J., et al. 2012, MNRAS, 427(2), 12091218 10.1111/j.1365-2966.2012.22049.xCrossRefGoogle Scholar
Clements, D. L., Rigby, E., Maddox, S., Dunne, L., Mortier, A., et al. 2010, A&A, 518, L8Google Scholar
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433(7026), 60410.1038/nature03335CrossRefGoogle Scholar
Di Pompeo, M. A., Brotherton, M. S., et al. 2011, ApJ, 743(1), 7110.1088/0004-637X/743/1/71CrossRefGoogle Scholar
Fabian, A. C. 2012, A&AR, 50, 455489 Google Scholar
Gibson, R. R., Brandt, W. N., Gallagher, S. C., & Schneider, D. P. 2009, ApJ, 696(1), 92410.1088/0004-637X/696/1/924CrossRefGoogle Scholar
Hewett, P. C. & Foltz, C. B. 2003, AJ, 125(4), 178410.1086/368392CrossRefGoogle Scholar
Kennicutt, R. C Jr. & Evans, N. J. 2012 A&AR, 50, 531608 Google Scholar
Kormendy, J. & Ho, L. C. 2013, A&AR, 51, 511653 Google Scholar
Lagache, G., Dole, H., Puget, J. L., Pérez-González, P. G., et al. 2004, ApJS, 154(1), 11210.1086/422392CrossRefGoogle Scholar
Le Borgne, D., Elbaz, D., Ocvirk, P., & Pichon, C. 2009, A&A, 504(3), 727740 Google Scholar
Lewis, G. F., Chapman, S. C., & Kuncic, Z. 2003, ApJ Letters, 596(1), L3510.1086/379053CrossRefGoogle Scholar
Magorrian, J., Tremaine, S., Richstone, D., Bender, R. et al. 1998, AJ, 115(6), 228510.1086/300353CrossRefGoogle Scholar
Mor, R. & Netzer, H. 2012, MNRAS, 420(1), 526541 10.1111/j.1365-2966.2011.20060.xCrossRefGoogle Scholar
Netzer, H., Lani, C., Nordon, R., Trakhtenbrot, B., et al. 2016, ApJ, 819(2), 12310.3847/0004-637X/819/2/123CrossRefGoogle Scholar
Ogle, P. M., Cohen, M. H., Miller, J. S., Tran, H. D., et al. 1999, ApJS, 125(1), 110.1086/313272CrossRefGoogle Scholar
Priddey, R. S., et al. 2007, MNRAS, 374, 86710.1111/j.1365-2966.2006.11200.xCrossRefGoogle Scholar
Reichard, T. A., Richards, G. T., Hall, P. B., Schneider, D. P., et al. 2003, AJ, 126(6), 259410.1086/379293CrossRefGoogle Scholar
Schulze, A., et al. 2017, ApJ, 848, 10410.3847/1538-4357/aa8e4cCrossRefGoogle Scholar
Silk, J. & Rees, M. J. 1998, A&A, 331, L1L4 Google Scholar
Symeonidis, M., Giblin, B. M., Page, M. J., et al. 2016, MNRAS, 459(1), 257276 10.1093/mnras/stw667CrossRefGoogle Scholar
Wethers, C. F., Kotilainen, J., Schramm, M. & Schulze, A. 2019, MNRAS, submitted Google Scholar
Weymann, R. J., Morris, S. L., Foltz, C. B., & Hewett, P. C. 1991, ApJ, 373, 2353 10.1086/170020CrossRefGoogle Scholar
Willott, C. J., Rawlings, S., & Grimes, J. A. 2003, ApJ, 598(2), 90910.1086/379066CrossRefGoogle Scholar