Article contents
Role of filament plasma remnants in ICMEs leading to geomagnetic storms
Published online by Cambridge University Press: 06 January 2014
Abstract
We studied three interplanetary coronal mass ejections associated with solar eruptive filaments. Filament plasma remnants embedded in these structures were identified using plasma, magnetic and compositional signatures. These features when impacted the Earth's terrestrial magnetosphere - ionosphere system, resulted in geomagnetic storms. During the main phase of associated storms, along with high density plasma structures, polarity reversals in the Y-component (dawn-to-dusk) of the interplanetary electric field seem to trigger major auroral substorms with concomitant changes in the polar ionospheric electric field. Here, we examine the cases where plasma dynamics and magnetic structuring in the presence of the prompt penetration of the electric field into the equatorial ionosphere affected the space weather while highlighting the complex geomagnetic storm-substorm relationship.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 8 , Symposium S300: Nature of Prominences and their role in Space Weather , June 2013 , pp. 493 - 494
- Copyright
- Copyright © International Astronomical Union 2013
References
- 1
- Cited by