Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T19:58:33.392Z Has data issue: false hasContentIssue false

The Role of “black hole burning” in the evolution of dense star clusters

Published online by Cambridge University Press:  11 March 2020

Kyle Kremer
Affiliation:
Department of Physics & Astronomy and Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL60208, USA email: [email protected]
Claire S. Ye
Affiliation:
Department of Physics & Astronomy and Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL60208, USA email: [email protected]
Sourav Chatterjee
Affiliation:
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai400005, India
Carl L. Rodriguez
Affiliation:
MIT-Kavli Institute for Astrophysics and Space Research, Cambridge, MA02139, USA
Frederic A. Rasio
Affiliation:
Department of Physics & Astronomy and Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL60208, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As self-gravitating systems, dense star clusters exhibit a natural diffusion of energy from their innermost to outermost regions, leading to a slow and steady contraction of the core until it ultimately collapses under gravity. However, in spite of the natural tendency toward “core collapse,” the globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the core-collapsed and non-core-collapsed clusters. This suggests an internal energy source is at work, delaying the onset of core collapse in many clusters. Over the past decade, a large amount of work has suggested that stellar black holes (BHs) play a dynamically-significant role in clusters throughout their entire lifetimes. Here we review our latest understanding of BH populations in GCs and demonstrate that, through their dynamical interaction with their host cluster, BHs can naturally explain the distinction between core-collapsed and non-core-collapsed clusters through a process we call “black hole burning.”

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, ApJL, 818, L22CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, PhRvL, 118, 221101Google Scholar
Antonov, V. A. 1962, Vestnik Leningrad Univ., 7, 135 [A translation appeared in IAU Symp. No. 113, Dynamics of Star Clusters, ed. Goodman, J. and Hut, P., 1985 (Dordrecht, Rei- del), p. 525]Google Scholar
Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M., & Bulik, T. 2017, MNRAS, 464, L36CrossRefGoogle Scholar
Arca Sedda, M., Askar, A., & Giersz, M. 2018, arXiv:1801.00795Google Scholar
Bahramian, A., Heinke, C. O., Tudor, V., et al. 2017, MNRAS, 467, 2199CrossRefGoogle Scholar
Banerjee, S., Baumgardt, H., & Kroupa, P. 2010, MNRAS, 402, 371CrossRefGoogle Scholar
Banerjee, S. & Kroupa, P. 2017, A&A, 597, A28Google Scholar
Bastian, N., Gieles, M., Lamers, H. J. G. L. M., Scheepmaker, R. A., & de Grijs, R. 2005, A&A, 431, 905Google Scholar
Belczynski, K., Kalogera, V., & Bulik, T. 2002, ApJ, 572, 407CrossRefGoogle Scholar
Breen, P. G. & Heggie, D. C. 2013, MNRAS, 432, 2779CrossRefGoogle Scholar
Breivik, K., Rodriguez, C. L., Larson, S. L., Kalogera, V., & Rasio, F. A. 2018, ApJ, 830, L18CrossRefGoogle Scholar
Chatterjee, S., Fregeau, J. M., Umbreit, S., & Rasio, F. A. 2010, ApJ, 719, 915CrossRefGoogle Scholar
Chatterjee, S., Umbreit, S., Fregeau, J. M., & Rasio, F. A. 2013a, MNRAS, 429, 2881CrossRefGoogle Scholar
Chatterjee, S., Rodriguez, C. L., Kalogera, V., & Rasio, F. A. 2017b, ApJ, 836, 26CrossRefGoogle Scholar
Chomiuk, L., Strader, J., Maccarone, T. J., Miller-Jones, J. C. A., Heinke, C., Noyola, E., Seth, A. C., & Ransom, S. 2013, ApJ, 777, 69CrossRefGoogle Scholar
Elson, R. A.-W. 1991, ApJS, 76, 185CrossRefGoogle Scholar
Fall, S. M., Chandar, R., & Whitmore, B. C. 2005, ApJ, 631, L133CrossRefGoogle Scholar
Fregeau, J. M., Guka, M. A., Joshi, K. J., & Rasio, F. A. 2003, ApJ, 593, 772CrossRefGoogle Scholar
Fregeau, J. M., Cheung, P., Portegies Zwart, S. F., & Rasio, F. A. 2004, MNRAS, 352, 1CrossRefGoogle Scholar
Fregeau, J. M. & Rasio, F. A. 2007, ApJ, 658, 1047CrossRefGoogle Scholar
Fryer, C. L. & Kalogera, V. 2001, ApJ, 554, 548CrossRefGoogle Scholar
Fryer, C. L., Belczynski, K., Wiktorowicz, G., Dominik, M., Kalogera, V., & Holz, D. E., 2012, ApJ, 749, 91CrossRefGoogle Scholar
Gennaro, M., Goodwin, S. P., Parker, R. J., Allison, R. J., & Brandner, W. 2017, MNRAS, 472, 1760CrossRefGoogle Scholar
Gieles, M., Larsen, S. S., Bastian, N., & Stein, I. T. 2006, A&A, 450, 129Google Scholar
Giesers, B., Dreizler, S., Husser, T.-O., Kamann, S., Escudé, G. A., et al. 2018, MNRAS, 475, L15CrossRefGoogle Scholar
Goodman, J. 1989, in Dynamics of Dense Stellar Systems, ed. Merritt, D. (New York, Cambridge University Press), p. 183Google Scholar
Harris, W. E. 1996, AJ, 112, 1487CrossRefGoogle Scholar
Heggie, D. & Hut, P. 2003, The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
Hénon, M. 1961, AnAp, 24, 369Google Scholar
Hénon, M. 1971a, AP&SS, 14, 151Google Scholar
Hobbs, G., Lorimer, D. R., Lyne, A. G., & Kramer, M. 2005, MRNAS, 360, 974CrossRefGoogle Scholar
Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, MNRAS, 315, 543CrossRefGoogle Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897CrossRefGoogle Scholar
Hurley, J. R. 2007, MNRAS, 379, 93CrossRefGoogle Scholar
Hurley, J. R., Sippel, A. C., Tout, C. A., & Aarseth, S. J. 2016, PASA, 33, e036CrossRefGoogle Scholar
Irwin, J. A., Brink, T. G., Bregman, J. N., & Roberts, T. P. 2010, ApJL, 712, L1 2005, ApJL, 621, L109CrossRefGoogle Scholar
Joshi, K. J., Rasio, F. A., & Portegies Zwart, S. 2000, ApJ, 540, 969CrossRefGoogle Scholar
Joshi, K. J., Nave, C. P., & Rasio, F. A. 2001, ApJ, 550, 691CrossRefGoogle Scholar
King, I. 1962, AJ, 67, 471CrossRefGoogle Scholar
Kremer, K., Ye, C. S., Chatterjee, S., Rodriguez, C. L., & Rasio, F. A. 2018b, ApJ, 855, L15CrossRefGoogle Scholar
Kremer, K., Chatterjee, S., Breivik, K., Rodriguez, C. L., Larson, S. L., & Rasio, F. A. 2018c, PRL, 120, 191103CrossRefGoogle Scholar
Kremer, K., Chatterjee, S., Ye, C. S., Rodriguez, C. L., & Rasio, F. A. 2019, ApJ, 871, 38CrossRefGoogle Scholar
Kroupa, P. 2001, MNRAS, 322, 23CrossRefGoogle Scholar
Kuhn, M. A., Feigelson, E. D., Getman, K. V., et al. 2014, ApJ, 787, 107CrossRefGoogle Scholar
Kulkarni, S. R., Hut, P., & McMillan, S. 1993, Nature, 364, 421CrossRefGoogle Scholar
Lynden-Bell, D. & Wood, R.MNRAS, 138, 495CrossRefGoogle Scholar
Maccarone, T. J., Kundu, A., Zepf, S. E., & Rhode, K. L. 2007, Nature, 445, 183CrossRefGoogle Scholar
Mackey, A. D., Wilkinson, M. I., Davies, M. B., & Gilmore, G. F. 2007, MNRAS, 379, L40CrossRefGoogle Scholar
Mackey, A. D., Wilkinson, M. I., Davies, M. B., & Gilmore, G. F. 2008, MNRAS, 386, 65CrossRefGoogle Scholar
Mandel, I. 2016, MNRAS, 456, 578CrossRefGoogle Scholar
Merritt, D., Piatek, S., Portegies Zwart, S., & Hemsendorf, M. 2004, ApJL, 608, L25CrossRefGoogle Scholar
McLaughlin, D. E. & van der Marel, R. P. 2005, ApJS, 161, 304CrossRefGoogle Scholar
Miller-Jones, J., Maccarone, T., Chomiuk, L., Strader, J., Bogdanov, S., Sivakoff, G., & Heinke, C. 2014a, A new black hole candidate in the globular cluster 47 Tucanae, ATNF ProposalGoogle Scholar
Moody, K. & Sigurdsson, S. 2009, ApJ, 690, 1370CrossRefGoogle Scholar
Morscher, M., Pattabiraman, B., Rodriguez, C., Rasio, F. A., & Umbreit, S. 2015, ApJ, 800, 9CrossRefGoogle Scholar
Morscher, M., Umbreit, S., Farr, W. M., & Rasio, F. A. 2013, ApJL, 763, L15CrossRefGoogle Scholar
Pattabiraman, B., Umbreit, S., Liao, W.-k., et al. 2013, ApJS, 204, 15CrossRefGoogle Scholar
Peuten, M., Zocchi, A., Gieles, M., Gualandris, A., & Hénault-Brunet, V. 2016, MNRAS, 462, 3CrossRefGoogle Scholar
Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431CrossRefGoogle Scholar
Repetto, S., Igoshev, A. P., & Nelemans, G., 2017, MNRAS, 467, 298Google Scholar
Rodriguez, C. L., Chatterjee, S., & Rasio, F. A. 2016, PhRvD, 93, 84029Google Scholar
Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S., & Rasio, F. A.PhRvD, 2018, 120, 151101Google Scholar
Samsing, J. & D’Orazio, D. J. 2018, MNRAS, 481, 4Google Scholar
Scheepmaker, R. A., Haas, M. R., Gieles, M., Bastian, N., Larson, S. S., & Lamers, H. J. G. L. M. 2007, A&A, 469, 925Google Scholar
Scheepmaker, R. A., Gieles, M., Haas, M. R., Bastian, N., & Larson, S. S. 2009, in Richtler, T., Larsen, S. eds, The Radii of Thousands of Star Clusters in M51 with HST/ACS. Springer, Heidelberg, p. 103Google Scholar
Sigurdsson, S. & Hernquist, L. 1993, Nature, 364, 423CrossRefGoogle Scholar
Shishkovsky, L., Strader, J., Chomiuk, L., Bahramian, A., Tremou, E, et al. 2018, ApJ, 855, 55CrossRefGoogle Scholar
Spitzer, Jr., L. 1969, ApJL, 158, L139CrossRefGoogle Scholar
Spitzer, L. 1987, Dynamical evolution of globular clusters. Princeton University Press, Princeton, NJp. 191CrossRefGoogle Scholar
Strader, J., Chomiuk, L., Maccarone, T. J., Miller-Jones, J. C. A., & Seth, A. C. 2012, Nature, 490, 71CrossRefGoogle Scholar
Strader, J. 2014, A black hole in the Galactic Globular Cluster, Chandra Proposal, M10Google Scholar
Trager, S. C., King, I. R., & Djorgovski, S. 1995, AJ, 109, 218CrossRefGoogle Scholar
Umbreit, S., Fregeau, J. M., Chatterjee, S., & Rasio, F. A. 2012, ApJ, 750, 31CrossRefGoogle Scholar
Vesperini, E. & Chernoff, D. F. 1994, ApJ, 431, 231CrossRefGoogle Scholar
Wang, L., Spurzem, R., Aarseth, S., Giersz, M., Askar, A.et al. 2016, MNRAS, 458, 2CrossRefGoogle Scholar
Weatherford, N. C., Chatterjee, S., Rodriguez, C. L., & Rasio, F. A. 2017, arXiv:1712.03979Google Scholar
Ye, C. S., Kremer, K., Chatterjee, S., Rodriguez, C. L., & Rasio, F. A. 2019, ApJ, 877, 122CrossRefGoogle Scholar
Ziosi, B. M., Mapelli, M., Branchesi, M., & Tormen, G. 2014, MNRAS, 441, 3703CrossRefGoogle Scholar