No CrossRef data available.
Published online by Cambridge University Press: 29 January 2021
Radio galaxies are ideal sites to scrutinize AGN feedback physics, as they are massive galaxies with jets that interact with the surrounding ISM. I will present a detailed analysis of the recent star formation history and conditions of a starbursting, massive radio galaxy at z = 2.6, PKS 0529-549. In the 8.5-hour VLT/X-Shooter spectrum, we detect unambiguous signatures of stellar photospheric absorption lines originating from OB-stars. Comparison with model spectra shows that more than one burst took place in its recent past: the most recent one at 4 − 7 Myr, and another aged ⩾20 Myr. ALMA observations of the [CI] atomic carbon emission line indicates that it has a low molecular gas fraction (∼13%) and short depletion time (∼40 Myr). Most intriguing is the modest velocity dispersion (⩽50 km/s) of these photospheric lines and the ALMA [CI] cold gas. We attribute its efficient star formation to compressive gas motions, induced by radio jets and/or interaction. Star formation works in concert with the AGN to remove any residual molecular gas and eventually leads to quenching.