Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T00:44:57.007Z Has data issue: false hasContentIssue false

The role of AGB stars in the evolution of globular clusters

Published online by Cambridge University Press:  30 December 2019

Paolo Ventura
Affiliation:
INAF, Observatory of Rome, Via Frascati 33, 00077, Monte Porzio Catone (RM), Italy email: [email protected]
Franca D’Antona
Affiliation:
INAF, Observatory of Rome, Via Frascati 33, 00077, Monte Porzio Catone (RM), Italy email: [email protected]
Marcella Di Criscienzo
Affiliation:
INAF, Observatory of Rome, Via Frascati 33, 00077, Monte Porzio Catone (RM), Italy email: [email protected]
Flavia Dell’Agli
Affiliation:
Instituto de Astrofsica de Canarias, E-38200 La Laguna, Tenerife, Spain Departamento de Astrofsica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
Marco Tailo
Affiliation:
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universitá di Padova, Vicolo dellOsservatorio 3, I-35122 Padova, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The results from high-resolution spectroscopy and accurate photometry have challenged the traditional paradigm that stars in globular clusters (GC) are simple stellar populations, rather suggesting that these structures harbor distinct groups of stars, differing in the chemical composition, particularly in the abundances of the light elements, from helium to silicon. Because this behavior is not shared by field stars, it is generally believed that some self-enrichment mechanism must have acted in GC, such that new stellar generations formed from the ashes of stars belonging to the original population. In this review, after presenting the state-of-the-art of the observations of GC stars, we discuss the possibility that the pollution of the intra-cluster medium was provided by the winds of AGB stars of initial mass above ∼3 M. These objects evolve with time scales of 40 − 100 Myr and contaminate their surroundings with gas processed by p-capture nucleosynthesis, in agreement with the chemical patterns traced by GC stars.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bedin, L. R., Piotto, G., & Anderson, J., et al. 2004, ApJ (Letters), 605, L125 Google Scholar
Blöcker, T., & Schönberner, D. 1991, A&A, 244, L43 Google Scholar
Caloi, V., & D’Antona, F. 2005, A&A, 435, 987 Google Scholar
Caloi, V., & D’Antona, F. 2007, A&A, 463, 949 Google Scholar
Caloi, V., & D’Antona, F. 2008, ApJ, 673, 847 CrossRefGoogle Scholar
Carretta, E., et al. 2009a, A&A, 505, 117 Google Scholar
Carretta, E., et al. 2009b, ApJL, 505, 139 Google Scholar
Cottrell, P.L., & Da Costa, G.L. 1981, ApJ (Letters), 245, L79 Google Scholar
D’Antona, F., Gratton, R., Chieffi, A. 1983, MmSAI, 54, 173 Google Scholar
D’Antona, F., Caloi, V., Montalban, J., Ventura, P., & Gratton, R. 2002, A&A, 395, 69 Google Scholar
D’Antona, F., & Caloi, V. 2004, ApJ, 611, 871 Google Scholar
DAntona, F., Bellazzini, M., Caloi, V., Pecci, F. Fusi, Galleti, S., & Rood, R. T. 2006, ApJ, 631, 868 CrossRefGoogle Scholar
D’Antona, F., & Ventura, P. 2007, MNRAS, 379, 1431 CrossRefGoogle Scholar
D’Antona, F., Vesperini, E., D’Ercole, A., Ventura, P., Milone, A. P., Marino, A. F., & Tailo, M. 2016, MNRAS, 458, 2122 CrossRefGoogle Scholar
Dell’Agli, F., Garca-Hernández, D. A., Ventura, P., et al. 2018, MNRAS, 475, 3098 CrossRefGoogle Scholar
D’Ercole, A., Vesperini, E., D’Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 391, 825 CrossRefGoogle Scholar
D’Ercole, A., D’Antona, F., Ventura, P., Vesperini, E., & McMillan, S. L. W. 2010, MNRAS, 407, 854 CrossRefGoogle Scholar
D’Ercole, A., D’Antona, F., & Vesperini, E. 2016, MNRAS, 461, 4088 CrossRefGoogle Scholar
Di Criscienzo, M., Ventura, P., D’Antona, F., Milone, A., & Piotto, G. 2010, MNRAS, 408, 999 CrossRefGoogle Scholar
Di Criscienzo, M., D’Antona, F., Milone, A. P., et al. 2011, MNRAS, 414, 3381 CrossRefGoogle Scholar
Di Criscienzo, M., Tailo, M., Milone, A. P., et al. 2015, MNRAS, 446, 1469 CrossRefGoogle Scholar
Di Criscienzo, M., Ventura, P., D’Antona, F., Dell’Agli, F., & Tailo, M. 2018, MNRAS, 479, 5325 CrossRefGoogle Scholar
Doherty, C. L., Gil-Pons, P., Lau, H. H. B., et al. 2014, MNRAS, 441, 582 CrossRefGoogle Scholar
Fishlock, C. K., Karakas, A. I., Lugaro, M., & Yong, D. 2014, ApJ, 797, 44 CrossRefGoogle Scholar
Gratton, R., et al. 2001, A&A, 369, 87 Google Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARAA, 42, 385 CrossRefGoogle Scholar
Karakas, A. I., & Lattanzio, J. C. 2014, PASA, 31, 30 CrossRefGoogle Scholar
Karakas, A. I., Lugaro, M., Carlos, M., et al. 2018, MNRAS, 477, 421 CrossRefGoogle Scholar
Kraft, R. P. 1979, ARAA, 17, 309 CrossRefGoogle Scholar
Majewski, S.R., et al. 2017, AJ, 154, 94 CrossRefGoogle Scholar
Mészáros, S., et al. 2015, AJ, 149, 153 CrossRefGoogle Scholar
Milone, A.P., et al. 2012, ApJ, 744, 58 CrossRefGoogle Scholar
Milone, A.P., et al. 2013, ApJ, 767, 120 CrossRefGoogle Scholar
Milone, A.P., et al. 2015, ApJ, 808, 51 CrossRefGoogle Scholar
Milone, A.P., Piotto, G., Renzini, A., et al. 2017, MNRAS, 464, 3636 CrossRefGoogle Scholar
Mucciarelli, A., Bellazzini, M., Ibata, R., et al. 2012, MNRAS, 426, 2889 CrossRefGoogle Scholar
Osborn, W. 1971, The Observatory, 91, 223 Google Scholar
Piotto, G., et al. 2005, ApJ, 621, 777 CrossRefGoogle Scholar
Piotto, G., et al. 2005, ApJ (Letters), 661, L53 Google Scholar
Piotto, G., Milone, A. P., Marino, A. F., et al. 2013, ApJ, 775, 15 CrossRefGoogle Scholar
Renzini, A., & Voli, M. 1981, A&A, 94, 175 Google Scholar
Renzini, A., D’Antona, F., Cassisi, S., et al. 2015, MNRAS, 454, 4197 CrossRefGoogle Scholar
Ventura, P., D’Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJ (Letters), 550, L65 Google Scholar
Ventura, P., & D’Antona, F. 2008, MNRAS, 385, 2034 CrossRefGoogle Scholar
Ventura, P., & D’Antona, F. 2009, A&A, 499, 835 Google Scholar
Ventura, P. 2010, Light Elements in the Universe, (SAO/NASA Astrophysics Data System), p. 147 Google Scholar
Ventura, P., D’Antona, F., Di Criscienzo, M., et al. 2012 ApJ (Letters), 761, L30 CrossRefGoogle Scholar
Ventura, P., Di Criscienzo, M., Carini, R., & D’Antona, F. 2013, MNRAS, 431, 3642 CrossRefGoogle Scholar
Ventura, P., Di Criscienzo, M., D’Antona, F., et al. 2014, MNRAS, 437, 3274 Google Scholar
Vesperini, E., McMillan, S. L., W., D’Antona, F., & D’Ercole, A. 2013, MNRAS, 429, 1913 CrossRefGoogle Scholar