Published online by Cambridge University Press: 23 April 2012
Code ROCHE is devoted to modeling multi-dataset observations of close eclipsing binaries such as radial velocities, multi-wavelength light curves, and broadening functions. The code includes circular surface spots, eccentric orbits, asynchronous or/and differential rotation, and third light. The program makes use of synthetic spectra to compute observed UBVRIJHK magnitudes from the surface model and the parallax. The surface grid is derived from a regular icosahedron to secure more-or-less equal (triangular) surface elements with observed intensities computed from synthetic spectra for supplied passband transmission curves. The limb-darkening is automatically interpolated from the tables after each computing step. All proximity effects (tidal deformation, reflection effect, gravity darkening) are taken into account. Integration of synthetic curves is improved by adaptive phase step (important for wide eclipsing systems).
The code is still under development. It is planned to extend its capabilities towards low mass ratios and widely different radii of components to facilitate modeling of extrasolar planet transits. Another planned extension of the code will be modeling of spatially-resolved eclipsing binaries using relative visual orbits and/or interferometric visibilities.