Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T05:39:15.598Z Has data issue: false hasContentIssue false

Revelation of Massive Quiescent Galaxies at z>3 from Deep JWST Spectroscopy

Published online by Cambridge University Press:  13 February 2024

Karl Glazebrook*
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia.
Themiya Nanayakkara
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia.
Danilo Marchesini
Affiliation:
Physics & Astronomy Dept., Tufts University, 574 Boston Ave., Medford, MA 02155, USA
Glenn Kacprzak
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia.
Colin Jacobs
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the first results from JWST/NIRSPEC spectroscopy of massive quiescent galaxy candidates at 3<z<4 to complete the spectroscopic survey of Schreiber et al. 2018. In the first six objects targeted (all of which were too faint to secure spectroscopic identifications from the ground) they all are confirmed as yet more massive quiescent galaxies at 3<z<4. The JWST spectra are high signal-to-noise and unambiguous. Most of them have ages of a few hundred Myr from stellar population fits to the spectra and about 1/3 show sign of AGN emission lines. One extraordinary object of stellar mass 1.6×1011 M shows a red spectrum with evidence of a 4000Å break and an age of ≳ 1Gyr at z=3.2 and forming at z>6.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Castellano, M., Menci, N., Grazian, A., et al. 2019, arXiv e-prints, arXiv:1903.12580.Google Scholar
Chabrier, G. 2003, PASP, 115, 763.Google Scholar
Conroy, C., Villaume, A., van Dokkum, P. G., & Lind, K. 2018, ApJ, 854, 139.Google Scholar
Dayal, P., Mesinger, A., & Pacucci, F. 2015, ApJ, 806, 67.Google Scholar
Esdaile, J., Glazebrook, K., Labbé, I., et al. 2021, ApJ, 908, L35.Google Scholar
Forrest, B., Marsan, Z. C., Annunziatella, M. et al. 2020a, ApJ, 890, L1 CrossRefGoogle Scholar
Forrest, B., Annunziatella, M., Wilson, G. et al. 2020b, ApJ, 903, 47 CrossRefGoogle Scholar
Forrest, B., Wilson, G., Muzzin, A., et al. 2022, ApJ, 938, 109.Google Scholar
Glazebrook, K., Schreiber, C., Labbé, I., et al. 2017, Nature, 544, 71.CrossRefGoogle Scholar
Labbé, I., van Dokkum, P., Nelson, E., et al. 2023, Nature, 616, 266.CrossRefGoogle Scholar
Maio, U., & Viel, M. 2023, A&A, 672, A71.Google Scholar
Merlin, E., Fortuni, F., Torelli, M., et al. 2019, MNRAS, 490, 3309.Google Scholar
Nanayakkara, T., Glazebrook, K., Jacobs, C., et al. 2022, arXiv e-prints, arXiv:2212.11638.Google Scholar
Parashari, P., & Laha, R. 2023, arXiv e-prints, arXiv:2305.00999.Google Scholar
Schreiber, C., Glazebrook, K., Nanayakkara, T., et al. 2018, A&A, 618, A85.Google Scholar
Suzuki, T. L., Glazebrook, K., Schreiber, C. et al. 2022, ApJ, 936, 61 Google Scholar
Tinker, J., Kravtsov, A. V., Klypin, A., et al. 2008, ApJ, 688, 709.Google Scholar
Valentino, F., Tanaka, M., Davidzon, I., et al. 2020, ApJ, 889, 93.Google Scholar
Watson, W. A., Iliev, I. T., D’Aloisio, A. et al. 2013, MNRAS, 433, 1230 CrossRefGoogle Scholar