Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T11:19:45.964Z Has data issue: false hasContentIssue false

Revealing the Mass Loss Structures of Four Key Massive Binaries Using Optical Spectropolarimetry

Published online by Cambridge University Press:  23 January 2015

Jamie R. Lomax*
Affiliation:
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, 73019, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The majority of massive stars are members of binary systems. However, in order to understand their evolutionary pathways, mass and angular momentum loss from these systems needs to be well characterized. Self-consistent explanations for their behavior across many wavelength regimes need to be valid in order to illuminate key evolutionary phases. I present the results of linear spectropolarimetric studies of three key binaries (β Lyrae, V356 Sgr, V444 Cyg, and WR 140) which reveal important geometric information about their circumstellar material. β Lyrae exhibits a repeatable discrepancy between secondary eclipse in the total and polarized light curves that indicates an accretion hot spot has formed on the edge of the disk in the system. The existence of this hot spot and its relationship to bipolar outflows within the system is important in the understanding of mass transfer dynamics in Roche-lobe overflow binaries. Preliminary work on V356 Sgr suggests the system maybe surrounded by a common envelope. V444 Cyg shows evidence that its shock creates a cone with a large opening angle of missing material around the WN star. This suggests the effects of radiative inhibition or braking, can be significant contributors to the location and shape of the shock within colliding wind binaries. The intrinsic polarization component of WR 140 is likely due to the formation of dust within the system near periastron passages. Continued work on these and additional objects will provide new and important constraints on the mass loss structures within binary systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Corcoran, M. F., Stevens, I. R., Pollock, A. M. T., et al. 1996, ApJ 464, 434CrossRefGoogle Scholar
Fauchez, T., De Becker, M., & Nazé, Y. 2011, Bulletin de la Societe Royale des Sciences de Liege 80, 673Google Scholar
Harmanec, P., Morand, F., Bonneau, D., et al. 1996, A&A 312, 879Google Scholar
Hoffman, J. L., Nordsieck, K. H., & Fox, G. K. 1998, AJ 115, 1576Google Scholar
Hubeny, I. & Plavec, M. J. 1991, AJ 102, 1156Google Scholar
Kasen, D., Nugent, P., Thomas, R. C., & Wang, L. 2004, ApJ 610, 876CrossRefGoogle Scholar
Koenigsberger, G. & Auer, L. H. 1985, ApJ 297, 255CrossRefGoogle Scholar
Lomax, J. R., Hoffman, J. L., Elias, N. M. II, Bastien, F. A., & Holenstein, B. D. 2012, ApJ 750, 59CrossRefGoogle Scholar
Maeda, Y., Koyama, K., Yokogawa, J., & Skinner, S. 1999, ApJ 510, 967Google Scholar
Mennickent, R. E. & Djurašević, G. 2013, MNRAS 432, 799Google Scholar
Moffat, A. F. J., Firmani, C., McLean, I. S., & Seggewiss, W. 1982, in De Loore, C. W. H. & Willis, A. J. (eds.), Wolf-Rayet Stars: Observations, Physics, Evolution, Vol. 99 of IAU Symposium, pp 577–581Google Scholar
Monnier, J. D., Tuthill, P. G., & Danchi, W. C. 2002, ApJ (Letters) 567, L137Google Scholar
Owocki, S. P. & Gayley, K. G. 1995, ApJ (Letters) 454, L145CrossRefGoogle Scholar
Podsiadlowski, P., Joss, P. C., & Hsu, J. J. L. 1992, ApJ 391, 246Google Scholar
Pollock, A. M. T. 1987, ApJ 320, 283Google Scholar
Robert, C., Moffat, A. F. J., Bastien, P., & Drissen, L., St.-Louis, N. 1989, ApJ 347, 1034Google Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science 337, 444Google Scholar
Shore, S. N. & Brown, D. N. 1988, ApJ 334, 1021Google Scholar
Stevens, I. R. & Pollock, A. M. T. 1994, MNRAS 269, 226Google Scholar
Taranova, O. G. & Shenavrin, V. I. 2011, Astronomy Letters 37, 30Google Scholar
Wilson, R. E. & Caldwell, C. N. 1978, ApJ 221, 917Google Scholar