Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T10:59:26.207Z Has data issue: false hasContentIssue false

Resolved maps of stellar mass and SED of galaxies from optical/NIR imaging and SPS models

Published online by Cambridge University Press:  13 April 2010

Stefano Zibetti
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected], [email protected]
Stéphane Charlot
Affiliation:
Institut d'Astrophysique de Paris, CNRS, Université Pierre & Marie Curie, 98 bis Boulevard Arago, 75014 Paris, France email: [email protected]
Hans-Walter Rix
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on the method developed by Zibetti, Charlot & Rix (2009) to construct resolved stellar mass maps of galaxies from optical and NIR imaging. Accurate pixel-by-pixel colour information (specifically gi and iH) is converted into stellar mass-to-light ratios with typical accuracy of 30%, based on median likelihoods derived from a Monte Carlo library of 50,000 stellar population synthesis models that include dust and updated TP-AGB phase prescriptions. Hence, surface mass densities are computed. In a pilot study, we analyze 9 galaxies spanning a broad range of morphologies. Among the main results, we find that: i) galaxies appear much smoother in stellar mass maps than at any optical or NIR wavelength; ii) total stellar mass estimates based on unresolved photometry are biased low with respect to the integral of resolved stellar mass maps, by up to 40%, due to dust obscured regions being under-represented in global colours; iii) within a galaxy, on local scales colours correlate with surface stellar mass density; iv) the slope and tightness of this correlation reflect/depend on the morphology of the galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bell, E. F. & de Jong, R. S. 2000, MNRAS, 312, 497CrossRefGoogle Scholar
Bell, E. F. & de Jong, R. S. 2001, ApJ, 550, 212CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Charlot, S. & Fall, S. M. 2000, ApJ, 539, 718CrossRefGoogle Scholar
Gavazzi, G., Boselli, A., Donati, A., Franzetti, P., & Scodeggio, M. 2003, A&A, 400, 451Google Scholar
Gavazzi, G., Pierini, D., & Boselli, A. 1996, A&A, 312, 397Google Scholar
Kauffmann, G. et al. , 2003, MNRAS, 341, 54CrossRefGoogle Scholar
Kennicutt, R. C. Jr. et al. 2003, PASP, 115, 928CrossRefGoogle Scholar
Lawrence, A. et al. 2007, MNRAS, 379, 1599CrossRefGoogle Scholar
Maraston, C. 2005, MNRAS, 362, 799CrossRefGoogle Scholar
Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T., Silva, L., & Granato, G. L. 2008, A&A, 482, 883Google Scholar
Scodeggio, M., Gavazzi, G., Franzetti, P., Boselli, A., Zibetti, S., & Pierini, D. 2002, A&A, 384, 812Google Scholar
Zibetti, S., Charlot, S., & Rix, H.-W. 2009, MNRAS in press, ArXiv:0904.4252Google Scholar