Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T21:33:34.037Z Has data issue: false hasContentIssue false

A relativistic orbit model for the LISA mission to be used in LISA TDI simulators

Published online by Cambridge University Press:  06 January 2010

Sophie Pireaux
Affiliation:
Department 1, Royal Observatory of Belgium, 3 avenue Circulaire, 1180 Brussels, Belgium email: [email protected]
Bertrand Chauvineau
Affiliation:
ARTEMIS Department, Observatoire de la Côte d'Azur, Avenue de Copernic, Grasse, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The LISA mission is an interferometer, formed by three spacecraft, that aims at the detection of gravitational waves in the [10−4, 10−1] Hz frequency band. Present LISA TDI simulators, aimed at validating the novel Time Delay Interferometry method, use a classical Keplerian orbit model at first order in eccentricity in the gravitational field of a spherical non-rotating Sun, without planets. We propose to use the same model but described in the framework of relativistic gravity, and we focus here on quantifying the differences between classical and relativistic orbits for the LISA spacecraft, under the same assumptions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Arnaud, K. A., Babak, S., Baker, J. G., Benacquista, M. J., Cornish, N. J., Cutler, C., Finn, L. S., Larson, S. L., Linttenberg, T., Porter, E. K., Vallisneri, V., Vecchio, A., & Vinet, J-Y. (the Mock LISA Challenge Task Force) 2007, arXiv:0701170v4(gr-qc)Google Scholar
Chauvineau, B., Pireaux, S., Regimbau, T., & Vinet, J-Y. 2005, Phys. Rev. D, 72, 122003CrossRefGoogle Scholar
Cornish, N. J., Rubbo, L. J., & Poujade, O. 2004, Phys. Rev. D, 69, 082003Google Scholar
Folkner, W. M., Hechler, F., Sweetser, T. H., Vincent, M. A., & Bender, P. L., 1997, CQG, 14, 14051410; and private communication from Dr. Folkner on the 30th July 2009.CrossRefGoogle Scholar
Hees, A. & Pireaux, S. 2009, this proceedings, 144CrossRefGoogle Scholar
Nayak, K. R., & Vinet, J-Y. 2005, CQG, 22, S437–S443CrossRefGoogle Scholar
Petiteau, A., Auger, G., Halloin, H., Jeannin, O., Pireaux, S., Plagnol, E., Regimbau, T., & Vinet, J-Y. 2008, Phys. Rev. D, 77023002Google Scholar
Pireaux, S., Barriot, J-P., & Rosenblatt, P. 2006, Acta Astronautica, 59, 517523; gr-qc/06022008CrossRefGoogle Scholar
Pireaux, S. 2007, CQG, 24, 22712281CrossRefGoogle Scholar
Pireaux, S. & Chauvineau, B. 2008, arXiv:0801.3627v1(gr-qc)Google Scholar
Shaddock, D. A., Tinto, M., Estabrook, F. B., & Armstrong, J. W. 2003, Phys. Rev. D, 68, 061303(R)CrossRefGoogle Scholar
Tinto, M., Vallisneri, M., & Armstrong, J. W. 2005, Phys. Rev. D, 71, 041101CrossRefGoogle Scholar
Vallisneri, M. 2005, Phys. Rev. D, 71, 022001CrossRefGoogle Scholar