Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T03:49:19.731Z Has data issue: false hasContentIssue false

Relativistic description of astronomical objects in multiple reference systems

Published online by Cambridge University Press:  06 January 2010

Chongming Xu
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, P.R.China email: [email protected]
Zhenghong Tang
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, P.R.China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many astronomical systems require for their description in the frame of Einstein's theory of gravity not just one but several reference systems. In the first post-Newtonian approximation the Damour-Soffel-Xu (DSX) formalism presents a new and improved treatment of celestial mechanics and astronomical reference systems for the gravitational N-body problem. In the DSX-formalism the astronomical bodies are characterized by their Blanchet-Damour (BD) mass- and spin-multipole moments. However, the time dependence of these moments requires additional dynamical equations, usually local flow equations describing the internal motions inside the bodies or additional assumptions about them. In this article the internal motion of astronomical bodies will be adressed within the 1st post-Newtonian approximation to Einstein's theory of gravity. A concept of quasi-rigid bodies will be introduced; after that, astronomical fluid and elastic bodies will be discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bretagnon, P., Rocher, P., & Simon, J. L. 1997, A&A, 319, 305Google Scholar
Carter, B. & Quintana, H. 1972, Proc. Roy. Soc. London, A331, 57Google Scholar
Chandrasekhar, S. 1971, ApJ, 164, 569CrossRefGoogle Scholar
Damour, T., Soffel, M., & Xu, C. 1991, Phys. Rev. D 43, 3273CrossRefGoogle Scholar
Damour, T., Soffel, M., & Xu, C. 1992, Phys. Rev. D 45, 1017CrossRefGoogle Scholar
Damour, T., Soffel, M., & Xu, C. 1993, Phys. Rev. D 47, 3124CrossRefGoogle Scholar
Damour, T., Soffel, M., & Xu, C. 1994, Phys. Rev. D 49, 618CrossRefGoogle Scholar
Jeffereys, H. & Vicence, R. O. 1957, MNRAS, 117, 142CrossRefGoogle Scholar
Soffel, M. 2009, this proceedings, 1CrossRefGoogle Scholar
Tao, J. & Xu, C. 2003, Int. J. Mod. Phys. D 12, 811CrossRefGoogle Scholar
Wahr, J. M. 1982, Geo-dynamics, No. 41, 327CrossRefGoogle Scholar
Xu, C. & Wu, X. 2001, Phys. Rev. D 63, 064001CrossRefGoogle Scholar
Xu, C., Wu, X., & Soffel, M. 2001, Phys. Rev. D 63, 043002CrossRefGoogle Scholar
Xu, C., Wu, X., Soffel, M., & Klioner, S. 2003, Phys. Rev. D 68, 064009CrossRefGoogle Scholar
Xu, C. & Tao, J. 2004, Phys. Rev. D 69, 024003CrossRefGoogle Scholar
Xu, C., Wu, X., & Soffel, M. 2005, Phys. Rev. D 71, 024030CrossRefGoogle Scholar