Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T09:58:11.306Z Has data issue: false hasContentIssue false

The relationship between globular cluster parameters and abundance variations

Published online by Cambridge University Press:  11 March 2020

David M. Nataf*
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD21218 emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss a meta-analysis of the association of abundance variations in globular cluster stars with the present-day stellar mass and metallicity of globular clusters. Using data for 42 globular clusters that are well-sampled from either or both of prior literature studies and the APOGEE survey, we confirm prior findings that increasing aluminum abundance variations in globular clusters are positively correlated with increasing present-day stellar mass or decreasing metallicity. We also demonstrate that the ratio of aluminum abundance variations to either nitrogen abundance variations or sodium abundance variations is itself positively correlated with decreasing metallicity and increasing stellar mass of globular clusters. This suggests that there were at least two non-supernovae chemical polluters that were active in the early universe.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bastian, N. & Lardo, C. 2018, ARA&A, 56, 83CrossRefGoogle Scholar
Baumgardt, H. & Hilker, M. 2018, MNRAS, 478, 1520CrossRefGoogle Scholar
Baumgardt, H., Hilker, M., Sollima, A., et al. 2019, MNRAS, 482, 5138CrossRefGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, A&A, 505, 117Google Scholar
Carretta, E., Bragaglia, A., Gratton, R., et al. 2009, A&A, 505, 139Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2013, A&A, 557, A138Google Scholar
Cohen, J. G. & Kirby, E. N. 2012, ApJ, 760, 86CrossRefGoogle Scholar
Dell’Agli, F., Garca-Hernández, D. A., Ventura, P., et al. 2018, MNRAS, 475, 3098CrossRefGoogle Scholar
D’Orazi, V., Lucatello, S., Lugaro, M., et al. 2013, ApJ, 763, 22CrossRefGoogle Scholar
D’Orazi, V., Gratton, R. G., Angelou, G. C., et al. 2015, MNRAS, 449, 4038CrossRefGoogle Scholar
Fall, S. M. & Zhang, Q. 2002, Extragalactic Star Clusters, 566CrossRefGoogle Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1Google Scholar
Harris, W. E. 1996, AJ, 112, 1487CrossRefGoogle Scholar
Johnson, C. I., Caldwell, N., Michael Rich, R., et al. 2019, MNRAS, 485, 4311CrossRefGoogle Scholar
Lattanzio, J., Forestini, M., & Charbonnel, C. 2000, Mem. Soc. Astron. Italiana, 71, 737Google Scholar
Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154, 94CrossRefGoogle Scholar
Marino, A. F., Villanova, S., Piotto, G., et al. 2008, A&A, 490, 625Google Scholar
Marino, A. F., Milone, A. P., Piotto, G., et al. 2009, A&A, 505, 1099Google Scholar
Martell, S. L. & Grebel, E. K. 2010, A&A, 519, A14Google Scholar
Masseron, T., Garca-Hernández, D. A., Mészáros, S., et al. 2019, A&A, 622, A191Google Scholar
Nataf, D. M., Wyse, R. F. G., Schiavon, R. P., et al. 2019, AJ, 158, 14CrossRefGoogle Scholar
Pancino, E., Romano, D., Tang, B., et al. 2017, A&A, 601, A112Google Scholar
Renzini, A., D’Antona, F., Cassisi, S., et al. 2015, MNRAS, 454, 4197CrossRefGoogle Scholar
Schiavon, R. P., Zamora, O., Carrera, R., et al. 2017, MNRAS, 465, 501CrossRefGoogle Scholar
Ventura, P., Garca-Hernández, D. A., Dell’Agli, F., et al. 2016, ApJ, 831, L17CrossRefGoogle Scholar