Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T04:59:20.202Z Has data issue: false hasContentIssue false

Regularities of the IMF Sector Structure in the Last 170 Years

Published online by Cambridge University Press:  24 July 2018

Mikhail V. Vokhmyanin
Affiliation:
St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034Russia email: [email protected]; [email protected]
Nadezhda V. Zolotova
Affiliation:
St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034Russia email: [email protected]; [email protected]
Dmitry I. Ponyavin
Affiliation:
St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034Russia email: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The interplanetary magnetic field (IMF) controls magnetospheric currents which cause variations of the ground-based magnetic field. Regular magnetic observations made in the 19th century allow us to infer daily IMF polarities back to 1844. The results coincide with satellite data in about 79% days. Moreover, for the most part of the 19th and 20th centuries, proxies obtained from various geomagnetic data (Helsinki, Saint-Petersburg, Potsdam, and Ekaterinburg) show the same patterns. This suggests that the reliability of the proxies is sufficient to study the IMF in the past. The large-scale organization of the IMF polarities, the so-called sector structure, reveals semi-centennial north-south displacements of the heliospheric current sheet (HCS).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Rosenberg, R. L. & Coleman, P. J. 1969, J. Geophys. Res., 74, 5611CrossRefGoogle Scholar
Crooker, N. U., Lazarus, A. J., Phillips, J. L., Steinberg, J. T., Szabo, A., Lepping, R. P. & Smith, E. J. 1997, J. Geophys. Res., 102, 4673Google Scholar
Smith, E. J., Jokipii, J. R., Kota, J., Lepping, R. P. & Szabo, A. 2000, ApJ, 533, 1084Google Scholar
Echer, E. & Svalgaard, L. 2004, Geoph. Res. Lett., 31, L12808Google Scholar
Hiltula, T. & Mursula, K. 2006, Geophys. Res. Lett., 33, L03105Google Scholar
Hiltula, T. & Mursula, K. 2007, Adv. Sp. Res., 40, 1054Google Scholar
Svalgaard, L. 1972, J. Geophys. Res., 77, 4027Google Scholar
Mansurov, S. M. 1969, Geomagn. Aeron., 9, 622Google Scholar
Vennerstroem, S., Zieger, B. & Friis-Christensen, E. 2001, J. Geophys. Res., 106, 16011CrossRefGoogle Scholar
Vokhmyanin, M. V. & Ponyavin, D. I. 2016, J. Geophys. Res., 121, 11943Google Scholar
Vennerstrom, S., Friis-Christensen, E., Olsen, N. & Moretto, T. 2007, Geophys. Res. Lett., 34, L16101CrossRefGoogle Scholar
Vokhmyanin, M. V. & Ponyavin, D. I. 2013, Geophys. Res. Lett., 40, 3512Google Scholar
Verma, V. K. 1993, ApJ, 403, 797CrossRefGoogle Scholar
Zhang, L., Mursula, K. & Usoskin, I. 2013, A&A, 552, A84Google Scholar
Pulkkinen, P. & Tuominen, I. 1998, A&A, 760, 755Google Scholar