Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T12:55:49.149Z Has data issue: false hasContentIssue false

Recovering the star formation history of galaxies through spectral fitting: Current challenges

Published online by Cambridge University Press:  29 March 2021

Lucimara P. Martins*
Affiliation:
Núcleo de Astrofísica/Universidade Cidade de São Paulo/Universidade Cruzeiro do Sul Rua Galvão Bueno, 868, São Paulo, SP, Brazil, 01506-000 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Barbuy, B., Perrin, M.-N., Katz, D., et al. 2003, A&A, 404, 661 Google Scholar
Bastian, N., Covey, K. R., Meyer, M. R., et al. 2010, ARA&A, 48, 339 Google Scholar
Bessell, M. S., Castelli, F., & Plez, B., 1998, A&A, 333, 231 Google Scholar
Bonatto, C., Bica, E., et al. 2012, MNRAS, 423, 1390 CrossRefGoogle Scholar
Bressan, A., Chiosi, C., Fagotto, F., et al. 1994, ApJS, 94, 63 10.1086/192073CrossRefGoogle Scholar
Bruzual, A. G. 1983, ApJ, 273, 105 10.1086/161352CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000 10.1046/j.1365-8711.2003.06897.xCrossRefGoogle Scholar
Chiappini, C., Matteucci, F., Padoan, P., et al. 2000, ApJ, 528, 711 10.1086/308185CrossRefGoogle Scholar
Chieffi, A., Limongi, M., et al. 2002, ApJ, 577, 281 CrossRefGoogle Scholar
Coelho, P., Mendes de Oliveira, C., & Cid Fernandes, R. 2009, MNRAS, 396, 624 CrossRefGoogle Scholar
Cid Fernandes, R., Mateus, A., Sodré, L., et al. 2005, MNRAS, 358, 363 CrossRefGoogle Scholar
Civiš, S., Ferus, M., Kubelík, P., et al. 2012, A&A, 542, 35 Google Scholar
Conroy, C. & Gunn, J. E. 2010, ApJ, 712, 833 10.1088/0004-637X/712/2/833CrossRefGoogle Scholar
Dotter, A., Chaboyer, B., Jevremović, D., et al. 2007, AJ, 134, 376 10.1086/517915CrossRefGoogle Scholar
Franchini, M., Morossi, C., Di Marcantonio, P., et al. 2018, ApJ, 862, 146 10.3847/1538-4357/aaca3cCrossRefGoogle Scholar
Fuhr, J. R. & Wiese, W. L. 2006, Journal of Physical and Chemical Reference Data, 35, 1669 10.1063/1.2218876CrossRefGoogle Scholar
González-Delgado, R. M., Cerviño, M., Martins, L. P., et al. 2005, MNRAS, 357, 945 CrossRefGoogle Scholar
Jain, R., Prugniel, P., Martins, L., et al. 2020, A&A, 635, 161 Google Scholar
Kitamura, J. R., Martins, L. P., Coelho, P., et al. 2017, A&A, 600, 11 Google Scholar
Koleva, M., Prugniel, P., Ocvirk, P., et al. 2008, MNRAS,385, 199810.1111/j.1365-2966.2008.12908.xCrossRefGoogle Scholar
Kurucz, R. L. 2006, in Stee, P., ed., Publications Series, EAS Vol. 18, EAS Publications Series. pp 129155, doi: 10.1051/eas:2006009 CrossRefGoogle Scholar
Kurucz, R. L. 2011, Canadian Journal of Physics, 89, 417 10.1139/p10-104CrossRefGoogle Scholar
Leitherer, C., et al. 1999, ApJS, 123, 3 10.1086/313233CrossRefGoogle Scholar
Maraston, C. 2005, MNRAS, 362, 799 10.1111/j.1365-2966.2005.09270.xCrossRefGoogle Scholar
Martins, L. P. & Coelho, P. 2007, MNRAS, 381, 1329 CrossRefGoogle Scholar
Martins, L. P., Rodríguez-Ardila, A., Diniz, S., et al. 2013, MNRAS, 435, 2861 CrossRefGoogle Scholar
Martins, L. P., Coelho, P., Caproni, A., et al. 2014, MNRAS, 442, 1294 CrossRefGoogle Scholar
Martins, L. P., Lima-Dias, C., Coelho, P. R. T., et al. 2019, MNRAS, 484, 2388 CrossRefGoogle Scholar
Meneses-Goytia, S., Peletier, R. F., Trager, S. C., et al. 2015, A&A, 582, A97 Google Scholar
Ocvirk, P., Pichon, C., Lançon, A., et al. 2006, MNRAS, 365, 46 CrossRefGoogle Scholar
Pietrinferni, A., Cassisi, S., Salaris, M., et al. 2009, ApJ, 697, 275 CrossRefGoogle Scholar
Rubinstein, R. Y. 1997, European Journal of Operational Research, 99, 89 CrossRefGoogle Scholar
Rubinstein, R. Y. 1999, Methodology and Computing in Applied Probability, 2, 127 10.1023/A:1010091220143CrossRefGoogle Scholar
Safronova, U. I., Safronova, A. S., & Johnson, W. R. 2010, Journal of Physics B Atomic Molecular Physics, 43, 144001 CrossRefGoogle Scholar
Salasnich, B., Girardi, L., Weiss, A., et al. 2000, A&A, 361, 1023 Google Scholar
Sansom, A. E., Milone, A. de C., Vazdekis, A., et al. 2013, MNRAS, 435, 952 CrossRefGoogle Scholar
Vazdekis, A., Sánchez-Blázquez, P., Falcón-Barroso, J., et al. 2010, MNRAS, 404, 1639 Google Scholar
Walcher, C. J., Böker, T., Charlot, S., et al. 2006 ApJ, 649, 692 10.1086/505166CrossRefGoogle Scholar
Walcher, J., Groves, B., Budavári, T., et al. 2011, Ap&SS, 331, 1 Google Scholar
Wiese, W. L., Fuhr, J. R., & Bridges, J. M., et al. 2011, in 2010 NASA Laboratory Astrophysics Workshop, 16Google Scholar
Worthey, G. 1994, ApJS, 95, 107 10.1086/192096CrossRefGoogle Scholar