Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T01:45:07.694Z Has data issue: false hasContentIssue false

Recent Status of Multi-Dimensional Core-Collapse Supernova Models

Published online by Cambridge University Press:  27 October 2016

Kei Kotake
Affiliation:
Department of Applied Physics, Fukuoka University, Jonan, Nanakuma, Fukuoka 814-0180, Japan
Ko Nakamura
Affiliation:
Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555
Tomoya Takiwaki
Affiliation:
Astrophysical Big Bang Laboratory, RIKEN, Saitama, 351-0198, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report a recent status of multi-dimensional neutrino-radiation hydrodynamics simulations for clarifying the explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we present two results, one from two-dimensional (2D) simulations using multiple progenitor models and another from three-dimensional (3D) rotational core-collapse simulation using a single progenitor. From the first ever systematic 2D simulations, it is shown that the compactness parameter ξ that characterizes the structure of the progenitors is a key to diagnose the explodability of neutrino-driven explosions. In the 3D rotating model, we find a new type of rotation-assisted explosion, which makes the explosion energy bigger than that in the non-rotating model. The unique feature has not been captured in previous 2D self-consistent rotational models because the growth of non-axisymmetric instabilities is the key to foster the explosion by enhancing the energy transport from the proto-neutron star to the gain region.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Kitaura, F. S., Janka, H.-T., & Hillebrandt, W. 2006, A&A, 450, 345 Google Scholar
Mezzacappa, A., Bruenn, S. W., Lentz, E. J., et al. 2015, arXiv:1501.01688Google Scholar
Foglizzo, T., Kazeroni, R., Guilet, J., et al. 2015, arXiv:1501.01334Google Scholar
Janka, H.-T., 2012, Annual Review of Nuclear and Particle Science, 62, 407 Google Scholar
Kotake, K., Sumiyoshi, K., Yamada, S., et al. 2012, Progress of Theoretical and Experimental Physics, 2012, 01A301 Google Scholar
Hanke, F., Müller, B., Wongwathanarat, A., Marek, A., & Janka, H.-T. 2013, ApJ, 770, 66 Google Scholar
Nakamura, K., Takiwaki, T., Kuroda, T., & Kotake, K. 2014, arXiv:1406.2415, accepted to PASJGoogle Scholar
Woosley, S. E., Heger, A., & Weaver, T. A. 2002, Reviews of Modern Physics, 74, 1015 Google Scholar
Bruenn, S. W., Mezzacappa, A., Hix, W. R., et al. 2013, ApJL, 767, L6 CrossRefGoogle Scholar
Tanaka, M., Kawabata, K. S., Maeda, K., et al. 2009, ApJ, 699, 1119 Google Scholar
Takiwaki, T., Kotake, K., Suwa, Y., in preparationGoogle Scholar
O'Connor, E. & Ott, C. D. 2011, ApJ, 730, 70 CrossRefGoogle Scholar
Ugliano, M., Janka, H.-T., Marek, A., & Arcones, A. 2012, ApJ, 757, 69 Google Scholar
Suwa, Y., Kotake, K., Takiwaki, T., et al. 2010, PASJ, 62, L49 Google Scholar
Nakamura, K., Kuroda, T., Takiwaki, T., & Kotake, K. 2014, ApJ, 793, 45 Google Scholar
Hayama, K., Kuroda, T., Kotake, K., & Takiwaki, T. 2015, arXiv:1501.00966Google Scholar