Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T10:24:59.042Z Has data issue: false hasContentIssue false

Recent Kepler Results On Circumbinary Planets

Published online by Cambridge University Press:  29 April 2014

William F. Welsh
Affiliation:
Astronomy Department, San Diego State University, San Diego, CA 92182-1221USA email: [email protected]
Jerome A. Orosz
Affiliation:
Astronomy Department, San Diego State University, San Diego, CA 92182-1221USA email: [email protected]
Joshua A. Carter
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138USA
Daniel C. Fabrycky
Affiliation:
Dept. of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064USA; and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ranked near the top of the long list of exciting discoveries made with NASA's Kepler photometer is the detection of transiting circumbinary planets. In just over a year the number of such planets went from zero to seven, including a multi-planet system with one of the planets in the habitable zone (Kepler-47). We are quickly learning to better detect and characterize these planets, including the recognition of their transit timing and duration variation “smoking gun” signature. Even with only a handful of such planets, some exciting trends are emerging.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Carter, J. A. & Agol, E. 2013, ApJ, 765 132CrossRefGoogle Scholar
Doyle, L. R., et al. 2011, Science, 333, 1602CrossRefGoogle Scholar
Holman, M. J., et al. 2010, Science, 330, 51Google Scholar
Holman, M. J. & Wiegert, P. A. 1999, AJ, 117, 621CrossRefGoogle Scholar
Jenkins, J. M., Doyle, L. R., & Cullers, D. K. 1996, Icarus, 119, 244Google Scholar
Kostov, V., et al. 2013, ApJ 770 article id. 52CrossRefGoogle Scholar
Meschiari, S. 2012, ApJ, 752, 71CrossRefGoogle Scholar
Ofir, A. 2008, MNRAS, 387, 1597Google Scholar
Orosz, J. A., et al. 2012a, ApJ, 758, 87CrossRefGoogle Scholar
Orosz, J. A., et al. 2012b, Science, 337, 1511Google Scholar
Paardekooper, S.-J., et al. 2012, ApJ, 754, L16Google Scholar
Pierens, A. & Nelson, R. P. 2008, A&A, 483, 633Google Scholar
Rafikov, R. R. 2013, ApJ, 764, L16Google Scholar
Schwamb, M. E., et al. 2013, ApJ 768 article id. 127Google Scholar
Welsh, W. F., et al. 2012, Nature, 481, 475CrossRefGoogle Scholar
Williams, D. M. & Pollard, D. 2002, IJA, 1, 61Google Scholar
Winn, J., et al. 2011, ApJ, 741, L1CrossRefGoogle Scholar
Youdin, A. N., et al. 2012, ApJ, 755, 17CrossRefGoogle Scholar