Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T08:07:18.819Z Has data issue: false hasContentIssue false

Recent insights into massive galaxy formation from observing structural evolution (Review)

Published online by Cambridge University Press:  29 March 2021

Andrew B. Newman*
Affiliation:
Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA, USA 91101
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New observations are probing the structures and kinematics of massive galaxies at a much greater level of detail than previously possible, especially during the first half of cosmic history. ALMA data now resolve the distribution of dust and molecular gas in massive galaxies to z ˜ 5. The stellar kinematics of several massive galaxies at z ˜ 2 – 3 have been spatially resolved using gravitational lensing, providing new information on the connection between quenching and morphological transformation. Star formation histories have been reconstructed for growing samples at z ˜ 0.8–2, revealing a wide range of timescales that correlate with galaxies’ sizes and environments, providing evidence for multiple paths to quiescence. I review these and other developments and summarize the insights they have provided into massive galaxies’ evolution.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Barro, G., Faber, S. M., Pérez-González, P. G., et al. 2013, ApJ, 765, 104 10.1088/0004-637X/765/2/104CrossRefGoogle Scholar
Barro, G., Faber, S. M., Pérez-González, P. G., et al. 2014, ApJ, 791, 52 10.1088/0004-637X/791/1/52CrossRefGoogle Scholar
Barro, G., Kriek, M., Pérez-González, P. G., et al. 2016, ApJl, 827, L32 10.3847/2041-8205/827/2/L32CrossRefGoogle Scholar
Barro, G., Kriek, M., Pérez-González, P. G., et al. 2017, ApJl, 851, L40 10.3847/2041-8213/aa9f0dCrossRefGoogle Scholar
Belli, S., Newman, A. B., & Ellis, R. S. 2019, ApJ, 874, 17 10.3847/1538-4357/ab07afCrossRefGoogle Scholar
Cappellari, M., Scott, N., Alatalo, K., et al. 2013, Mnras, 432, 1709 10.1093/mnras/stt562CrossRefGoogle Scholar
Dekel, A. & Burkert, A. 2014, Mnras, 438, 1870 10.1093/mnras/stt2331CrossRefGoogle Scholar
Di Matteo, P., Bournaud, F., Martig, M., et al. 2008, A&A, 492, 31 Google Scholar
Genzel, R., Förster Schreiber, N. M., Rosario, D., et al. 2014, ApJ, 796, 7 10.1088/0004-637X/796/1/7CrossRefGoogle Scholar
Glazebrook, K., Schreiber, C., Labbé, I., et al. 2017, Nature, 544, 71 10.1038/nature21680CrossRefGoogle Scholar
Hodge, J. A., Carilli, C. L., Walter, F., et al. ApJ, 760, 11 10.1088/0004-637X/760/1/11CrossRefGoogle Scholar
Jiménez-Andrade, E. F., Zavala, J. A., Magnelli, B., et al. 2020, ApJ, 890, 171 10.3847/1538-4357/ab6decCrossRefGoogle Scholar
Jones, G. C., Carilli, C. L., Shao, Y., et al. 2017, ApJ, 850, 180 10.3847/1538-4357/aa8df2CrossRefGoogle Scholar
Lang, P., Schinnerer, E., Smail, I., et al. 2019, ApJ, 879, 54 10.3847/1538-4357/ab1f77CrossRefGoogle Scholar
Newman, A. B., Belli, S., & Ellis, R. S. 2015, ApJl, 813, L7 10.1088/2041-8205/813/1/L7CrossRefGoogle Scholar
Newman, A. B., Belli, S., Ellis, R. S., et al. 2018a, ApJ, 862, 125 10.3847/1538-4357/aacd4dCrossRefGoogle Scholar
Newman, A. B., Belli, S., Ellis, R. S. 2018b, ApJ, 862, 126 10.3847/1538-4357/aacd4fCrossRefGoogle Scholar
Oteo, I., Ivison, R. J., Dunne, L., et al. 2016, ApJ, 827, 34 10.3847/0004-637X/827/1/34CrossRefGoogle Scholar
Riechers, D. A., Carilli, C. L., Capak, P. L., et al. 2014, ApJ, 796, 84 10.1088/0004-637X/796/2/84CrossRefGoogle Scholar
Schreiber, C., Labbé, I., Glazebrook, K., et al. 2018a, A&A, 611, A22 Google Scholar
Schreiber, C., Glazebrook, K., Nanayakkara, T., et al. 2018b, A&A, 618, A85 Google Scholar
Simons, R. C., Kassin, S. A., Trump, J. R., et al. 2016, ApJ, 830, 14 10.3847/0004-637X/830/1/14CrossRefGoogle Scholar
Spilker, J. S., Bezanson, R., Weiner, B. J., et al. 2019, ApJ, 883, 81 10.3847/1538-4357/ab3804CrossRefGoogle Scholar
Straatman, C. M. S., Labbé, I., Spitler, L. R., et al. 2014, ApJl, 783, L14 10.1088/2041-8205/783/1/L14CrossRefGoogle Scholar
Tadaki, K., Iono, D., Yun, M. S. et al. 2018, Nature, 560, 613 10.1038/s41586-018-0443-1CrossRefGoogle Scholar
Tadaki, K.-i., Genzel, R., Kodama, T., et al. 2017a, ApJ, 834, 135 10.3847/1538-4357/834/2/135CrossRefGoogle Scholar
Tadaki, K.-i., Kodama, T., Nelson, E. J., et al. 2017b, ApJl, 841, L2510.3847/2041-8213/aa7338CrossRefGoogle Scholar
Talia, M., Pozzi, F., Vallini, L., et al. 2018, Mnras, 476, 3956 10.1093/mnras/sty481CrossRefGoogle Scholar
Tanaka, M., Valentino, F., Toft, S., et al. 2019, ApJ l, 885, L3410.3847/2041-8213/ab4ff3CrossRefGoogle Scholar
Toft, S., Smolčić, V., Magnelli, B. et al. 2014, ApJ, 782, 68 10.1088/0004-637X/782/2/68CrossRefGoogle Scholar
Toft, S., Zabl, J., Richard, J., et al. 2017, Nature, 546, 510 10.1038/nature22388CrossRefGoogle Scholar
Valentino, F., Tanaka, M., Davidzon, I., et al. 2020, ApJ, 889, 93 10.3847/1538-4357/ab64dcCrossRefGoogle Scholar
Veale, M., Ma, C.-P., Thomas, J., et al. 2017, Mnras, 464, 356 10.1093/mnras/stw2330CrossRefGoogle Scholar
Wild, V., Taj Aldeen, L., Carnall, A., et al. 2020, Mnras, 494, 529 10.1093/mnras/staa674CrossRefGoogle Scholar
Wu, P.-F., van der Wel, A., Bezanson, R., et al. 2018, ApJ, 868, 37 10.3847/1538-4357/aae822CrossRefGoogle Scholar
Wu, P.-F., van der Wel, A., Bezanson, R. 2020, ApJ, 888, 77 10.3847/1538-4357/ab5fd9CrossRefGoogle Scholar
Zolotov, A., Dekel, A., Mandelker, N., et al. 2015, Mnras, 450, 2327 10.1093/mnras/stv740CrossRefGoogle Scholar