Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T22:46:00.277Z Has data issue: false hasContentIssue false

Recent highlights of spectropolarimetry applied to the magnetometry of massive stars

Published online by Cambridge University Press:  23 January 2015

J. H. Grunhut*
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spectropolarimetry is a powerful tool used to probe fundamental properties of stars that cannot typically be measured in any other way. A new generation of high-resolution spectropolarimeters (ESPaDOnS at the Canada-France-Hawaii telescope, Narval at the Télescope Bernad Lyot, and HARPSpol at the 3.6-m ESO telescope) and dedicated observing campaigns (such as the Magnetism in Massive Stars (MiMeS) project) have led to significant improvements in both our observational and theoretical understanding of the underlying physics governing massive stars. In this article I review recent advances in the field of stellar magnetism of massive stars acquired using spectropolarimetry.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Alecian, E., Catala, C., Wade, G. A., et al. 2008a, MNRAS 385, 391CrossRefGoogle Scholar
Alecian, E., Wade, G., Catala, C., et al. 2008b, A&A 481, L99Google Scholar
Alecian, E., Wade, G. A., Catala, C., et al. 2009, MNRAS 400, 354Google Scholar
Alecian, E., Wade, G. A., Catala, C., et al. 2013, MNRAS 429, 1001Google Scholar
Aurière, M., Donati, J.-F., Konstantinova-Antova, R., et al. 2010, A&A 516, L2Google Scholar
Aurière, M., Wade, G. A., Silvester, J., et al. 2007, A&A 475, 1053Google Scholar
Ayres, T. R. 2005, ApJ 618, 493CrossRefGoogle Scholar
Babcock, H. W. 1947, ApJ 105, 105Google Scholar
Babel, J. & Montmerle, T. 1997, A&A 323, 121Google Scholar
Bagnulo, S., Landstreet, J. D., Mason, E., et al. 2006, A&A 450, 777Google Scholar
Bohlender, D., Landstreet, J., Brown, D., & Thompson, I. 1987, ApJ 323, 325Google Scholar
Borra, E. F. & Landstreet, J. D. 1979, ApJ 228, 809Google Scholar
Bouret, J.-C., Donati, J.-F., Martins, F., et al. 2008, MNRAS 389, 75CrossRefGoogle Scholar
Braithwaite, J. 2009, MNRAS 397, 763Google Scholar
Carpenter, K. G. & Robinson, R. D. 1997, ApJ 479, 970CrossRefGoogle Scholar
Chiavassa, A., Haubois, X., Young, J. S., et al. 2010, A&A 515, A12Google Scholar
Cowling, T. G. 1945, MNRAS 105, 166CrossRefGoogle Scholar
Crowther, P. A., Hillier, D. J., & Smith, L. J. 1995, A&A 293, 172Google Scholar
de la Chevrotière, A., St-Louis, N., & Moffat, A. F. J., the MiMeS Collaboration 2013, ApJ 764, 171Google Scholar
de la Chevrotière, A., St-Louis, N., & Moffat, A. F. J., the MiMeS Collaboration 2014, ApJ 781, 73CrossRefGoogle Scholar
de Winter, D., Koulis, C., The, P. S., et al. 1997, A&AS 121, 223Google Scholar
Donati, J.-F., Babel, J., Harries, T., et al. 2002, MNRAS 333, 55Google Scholar
Donati, J.-F., Howarth, I., Bouret, J.-C., et al. 2006, MNRAS 365, L6Google Scholar
Donati, J.-F., Semel, M., Carter, B., Rees, D. & Collier Cameron, A. 1997, MNRAS 291, 658Google Scholar
Donati, J.-F., Wade, G., Babel, J., et al. 2001, MNRAS 326, 1265Google Scholar
Dorch, S. B. F. 2004, A&A 423, 1101Google Scholar
Duez, V. & Mathis, S. 2010, A&A 517, A58Google Scholar
Eldridge, J. J. 2008, Royal Society of London Philosophical Transactions Series A 366, 4441Google Scholar
Ferrario, L. & Wickramasinghe, D. 2006, MNRAS 367, 1323CrossRefGoogle Scholar
Gagne, M., Caillault, J.-P., Stauffer, J. R., & Linsky, J. L. 1997, ApJL 478, L87Google Scholar
Gayley, K. G. & Ignace, R. 2010, ApJ 708, 615Google Scholar
Gray, D. F. 1989, PASP 101, 832Google Scholar
Grunhut, J. H., Rivinius, T., Wade, G. A., et al. 2012a, MNRAS 419, 1610Google Scholar
Grunhut, J. H., Wade, G. A., Hanes, D. A., & Alecian, E. 2010, MNRAS 408, 2290Google Scholar
Grunhut, J. H., Wade, G. A., Sundqvist, J. O., et al. 2012b, MNRAS 426, 2208CrossRefGoogle Scholar
Harries, T. J. 2000, MNRAS 315, 722Google Scholar
Henrichs, H. F., de Jong, J. A., Donati, D.-F., et al. 2000, in Glagolevskij, Y. V. & Romanyuk, I. I. (eds.), Magnetic Fields of Chemically Peculiar and Related Stars, pp 57–60Google Scholar
Herbig, G. H. 1960, ApJS 4, 337Google Scholar
Hubrig, S., Briquet, M., De Cat, P., et al. 2009, Astronomische Nachrichten 330, 317Google Scholar
Hubrig, S., Briquet, M., Schöller, M., et al. 2006, MNRAS 369, L61Google Scholar
Hubrig, S., Ilyin, I., Schöller, M., et al. 2011, ApJL 726, L5Google Scholar
Hussain, G. A. J. & Alecian, E. 2014, in IAU Symposium, Vol. 302 of IAU Symposium, pp 25–37Google Scholar
Kochukhov, O., Makaganiuk, V., & Piskunov, N. 2010, A&A 524, A5Google Scholar
Landstreet, J. & Borra, E. 1978, ApJL 224, L5Google Scholar
Landstreet, J. D. 1982, ApJ 258, 639Google Scholar
Massey, P., Neugent, K. F., Morrell, N., & Hillier, D. J. 2014, ApJ 788, 83Google Scholar
Mestel, L. 2001, in Mathys, G., Solanki, S., & Wickramasinghe, D. (eds.), Magnetic Fields Across the Hertzsprung-Russell Diagram, Vol. 248 of Astronomical Society of the Pacific Conference Series, p. 3Google Scholar
Meynet, G., Eggenberger, P., & Maeder, A. 2011, A&A 525, L11Google Scholar
Moss, D. 2001, in Mathys, G., Solanki, S., & Wickramasinghe, D. (eds.), Magnetic Fields Across the Hertzsprung-Russell Diagram, Vol. 248 of Astronomical Society of the Pacific Conference Series, p. 305Google Scholar
Neiner, C., Grunhut, J. H., Petit, V., et al. 2012, MNRAS 426, 2738Google Scholar
Oksala, M., Wade, G., Marcolino, W., et al. 2010, MNRAS 405, L51Google Scholar
Park, B.-G. & Sung, H. 2002, AJ 123, 892Google Scholar
Parker, E. N. 1955, ApJ 122, 293Google Scholar
Porter, J. M. & Rivinius, T. 2003, PASP 115, 1153Google Scholar
Rivinius, T., Carciofi, A. C., & Martayan, C. 2013, A&A Rev. 21, 69Google Scholar
Rivinius, T., Szeifert, T., Barrera, L., et al. 2010, MNRAS 405, L46Google Scholar
Shultz, M., Wade, G. A., Grunhut, J., et al. 2012, ApJ 750, 2Google Scholar
Silvester, J., Wade, G. A., Kochukhov, O., et al. 2012, MNRAS 426, 1003Google Scholar
Stahler, S. W. 1983, ApJ 274, 822CrossRefGoogle Scholar
Sundqvist, J., ud-Doula, A., Owocki, S., et al. 2012, MNRAS p. L433Google Scholar
Sung, H., Bessell, M. S., & Lee, S.-W. 1997, AJ 114, 2644Google Scholar
Tarasova, T. N. 2002, Astronomy Reports 46, 474Google Scholar
The, P. S., de Winter, D., & Perez, M. R. 1994, A&AS 104, 315Google Scholar
Thompson, I. B. & Landstreet, J. D. 1985, ApJL 289, L9Google Scholar
Tout, C. A., Wickramasinghe, D. T., & Ferrario, L. 2004, MNRAS 355, L13Google Scholar
ud-Doula, A. & Owocki, S. 2002, ApJ 576, 413Google Scholar
ud-Doula, A., Owocki, S., & Townsend, R. 2008, MNRAS 385, 97Google Scholar
Vieira, S. L. A., Corradi, W. J. B., Alencar, S. H. P., et al. 2003, AJ 126, 2971Google Scholar
Wade, G., Grunhut, J., Gräfener, G., et al. 2012a, MNRAS 419, 2459Google Scholar
Wade, G. A., Drouin, D., Bagnulo, S., et al. 2005, A&A 442, L31Google Scholar
Wade, G. A., Maíz Apellániz, J., Martins, F., et al. 2012b, MNRAS 425, 1278Google Scholar
Walborn, N. R. 1972, AJ 77, 312Google Scholar
Walborn, N. R., Sota, A., Maíz Apellániz, J., et al. 2010, ApJL 711, L143Google Scholar
Walder, R., Folini, D., & Meynet, G. 2012, Space Science Reviews 166, 145Google Scholar
Weber, E. & Davis, L. Jr 1967, ApJ 148, 217Google Scholar