Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:58:52.991Z Has data issue: false hasContentIssue false

Recent Developments in the Babcock–Leighton Solar Dynamo Theory

Published online by Cambridge University Press:  23 December 2024

Bidya Binay Karak*
Affiliation:
Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Babcock–Leighton process, in which the poloidal field is generated through the decay and dispersal of tilted bipolar magnetic regions (BMRs), is observed to be the major process behind the generating poloidal field in the Sun. Based on this process, the Babcock–Leighton dynamo models have been a promising tool for explaining various aspects of solar and stellar magnetic cycles. In recent years, in the toroidal to poloidal part of this dynamo loop, various nonlinear mechanisms, namely the flux loss through the magnetic buoyancy in the formation of BMRs, latitude quenching, tilt quenching, and inflows around BMRs, have been identified. While these nonlinearities tend to produce a stable magnetic cycle, the irregular properties of BMR, mainly the scatter around Joy’s law tilt, make a considerable variation in the solar cycle, including grand minima and maxima. After reviewing recent developments in these topics, I end the presentation by discussing the recent progress in making the early prediction of the solar cycle.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Albert, C., Ferriz–Mas, A., Gaia, F., & Ulzega, S. 2021, Can Stochastic Resonance Explain Recurrence of Grand Minima? Astrophys. J, 916(2), L9.CrossRefGoogle Scholar
Babcock, H. W. 1961, The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. Astrophys. J, 133, 572.CrossRefGoogle Scholar
Baliunas, S. L., Donahue, R. A., Soon, W. H., Horne, J. H., Frazer, J., Woodard–Eklund, L., Bradford, M., Rao, L. M., Wilson, O. C., Zhang, Q., Bennett, W., Briggs, J., Carroll, S. M., Duncan, D. K., Figueroa, D., Lanning, H. H., Misch, T., Mueller, J., Noyes, R. W., Poppe, D., Porter, A. C., Robinson, C. R., Russell, J., Shelton, J. C., Soyumer, T., Vaughan, A. H., & Whitney, J. H. 1995, Chromospheric variations in main-sequence stars. Astrophys. J, 438, 269287.CrossRefGoogle Scholar
Baumann, I., Schmitt, D., Schüssler, M., & Solanki, S. K. 2004, Evolution of the large-scale magnetic field on the solar surface: A parameter study. Astrophys. J, 426, 10751091.Google Scholar
Bhowmik, P., Jiang, J., Upton, L., Lemerle, A., & Nandy, D. 2023, Physical Models for Solar Cycle Predictions. Space Sci. Rev., 219(5), 40.CrossRefGoogle Scholar
Biswas, A., Karak, B. B., & Cameron, R. 2022, Toroidal Flux Loss due to Flux Emergence Explains why Solar Cycles Rise Differently but Decay in a Similar Way. Phys. Rev. Lett., 129(24), 241102.CrossRefGoogle ScholarPubMed
Biswas, A., Karak, B. B., & Kumar, P. 2023,a Exploring the reliability of polar field rise rate as a precursor for an early prediction of solar cycle. MNRAS, 526a(3), 39944003.CrossRefGoogle Scholar
Biswas, A., Karak, B. B., Usoskin, I., & Weisshaar, E. 2023,b Long-Term Modulation of Solar Cycles. Space Sci. Rev., 219b(3), 19.CrossRefGoogle Scholar
Cameron, R. & Schüssler, M. 2015, The crucial role of surface magnetic fields for the solar dynamo. Science, 347, 13331335.CrossRefGoogle ScholarPubMed
Cameron, R. H. & Schüssler, M. 2012, Are the strengths of solar cycles determined by converging flows towards the activity belts? Astrophys. J, 548, A57.Google Scholar
Cameron, R. H. & Schüssler, M. 2016, The turbulent diffusion of toroidal magnetic flux as inferred from properties of the sunspot butterfly diagram. Astrophys. J, 591, A46.Google Scholar
Cameron, R. H. & Schüssler, M. 2017, Understanding Solar Cycle Variability. Astrophys. J, 843(2), 111.CrossRefGoogle Scholar
Cameron, R. H. & Schüssler, M. 2023, Observationally Guided Models for the Solar Dynamo and the Role of the Surface Field. Space Sci. Rev., 219(7), 60.CrossRefGoogle Scholar
Charbonneau, P. 2020, Dynamo models of the solar cycle. Living Reviews in Solar Physics, 17(1), 4.CrossRefGoogle Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Predicting Solar Cycle 24 With a Solar Dynamo Model. Physical Review Letters, 98(13), 131103.CrossRefGoogle ScholarPubMed
Choudhuri, A. R. & Karak, B. B. 2009, A possible explanation of the Maunder minimum from a flux transport dynamo model. Res. Astron. Astrophys., 9, 953958.CrossRefGoogle Scholar
Choudhuri, A. R. & Karak, B. B. 2012, Origin of Grand Minima in Sunspot Cycles. Phys. Rev. Lett., 109(17), 171103.CrossRefGoogle ScholarPubMed
D’Silva, S. & Choudhuri, A. R. 1993, A theoretical model for tilts of bipolar magnetic regions. Astrophys. J, 272, 621.Google Scholar
Garg, S., Karak, B. B., Egeland, R., Soon, W., & Baliunas, S. 2019, Waldmeier Effect in Stellar Cycles. Astrophys. J, 886(2), 132.CrossRefGoogle Scholar
Gizon, L., Duvall, T. L., J., & Larsen, R. M. Probing Surface Flows and Magnetic Activity with Time-Distance Helioseismology. In Brekke, P., Fleck, B. , & Gurman, J. B., editors, Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions 2001, volume 203, 189.CrossRefGoogle Scholar
Golubeva, E. M., Biswas, A., Khlystova, A. I., Kumar, P., & Karak, B. B. 2023, Probing the variations in the timing of the Sun’s polar magnetic field reversals through observations and surface flux transport simulations. MNRAS, 525(2), 17581768.CrossRefGoogle Scholar
González Hernández, I., Kholikov, S., Hill, F., Howe, R., & Komm, R. 2008, Subsurface Meridional Circulation in the Active Belts. Sol Phys, 252(2), 235245.CrossRefGoogle Scholar
Hathaway, D. H. 2015, The Solar Cycle. Living Reviews in Solar Physics, 12(1), 4.CrossRefGoogle ScholarPubMed
Hazra, G., Jiang, J., Karak, B., & Kitchatinov, L. 2019, Stellar Cycles with Dynamo. Astrophys. J, submitted, 000, 00.Google Scholar
Hazra, S., Passos, D., & Nandy, D. 2014, A Stochastically Forced Time Delay Solar Dynamo Model: Self-consistent Recovery from a Maunder-like Grand Minimum Necessitates a Mean-field Alpha Effect. Astrophys. J, 789, 5.CrossRefGoogle Scholar
Jha, B. K., Karak, B. B., Mandal, S., & Banerjee, D. 2020, Magnetic Field Dependence of Bipolar Magnetic Region Tilts on the Sun: Indication of Tilt Quenching. Astrophys. J, 889(1), L19.CrossRefGoogle Scholar
Jiang, J. 2020, Nonlinear Mechanisms that Regulate the Solar Cycle Amplitude. Astrophys. J, 900(1), 19.CrossRefGoogle Scholar
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, Solar activity forecast with a dynamo model. MNRAS, 381, 15271542.CrossRefGoogle Scholar
Jiang, J., Işik, E., Cameron, R. H., Schmitt, D., & Schüssler, M. 2010, The Effect of Activity-related Meridional Flow Modulation on the Strength of the Solar Polar Magnetic Field. Astrophys. J, 717(1), 597602.CrossRefGoogle Scholar
Jiao, Q., Jiang, J., & Wang, Z.-F. 2021, Sunspot tilt angles revisited: Dependence on the solar cycle strength. Astrophys. J, 653, A27.Google Scholar
Karak, B. B. 2010, Importance of Meridional Circulation in Flux Transport Dynamo: The Possibility of a Maunder-like Grand Minimum. Astrophys. J, 724, 10211029.CrossRefGoogle Scholar
Karak, B. B. 2020, Dynamo Saturation through the Latitudinal Variation of Bipolar Magnetic Regions in the Sun. Astrophys. J, 901(2), L35.CrossRefGoogle Scholar
Karak, B. B. 2023, Models for the long-term variations of solar activity. Living Reviews in Solar Physics, 20(1), 3.CrossRefGoogle Scholar
Karak, B. B. & Cameron, R. 2016, Babcock–Leighton Solar Dynamo: The Role of Downward Pumping and the Equatorward Propagation of Activity. Astrophys. J, 832, 94.CrossRefGoogle Scholar
Karak, B. B. & Choudhuri, A. R. 2011, The Waldmeier effect and the flux transport solar dynamo. MNRAS, 410, 15031512.Google Scholar
Karak, B. B. & Choudhuri, A. R. 2012, Quenching of Meridional Circulation in Flux Transport Dynamo Models. Sol Phys, 278, 137148.CrossRefGoogle Scholar
Karak, B. B. & Choudhuri, A. R. 2013, Studies of grand minima in sunspot cycles by using a flux transport solar dynamo model. Res. Astron. Astrophys., 13, 13391357.CrossRefGoogle Scholar
Karak, B. B., Jiang, J., Miesch, M. S., Charbonneau, P., & Choudhuri, A. R. 2014,a Flux Transport Dynamos: From Kinematics to Dynamics. Space Sci. Rev., 186a, 561602.CrossRefGoogle Scholar
Karak, B. B., Kitchatinov, L. L., & Brandenburg, A. 2015, Hysteresis between Distinct Modes of Turbulent Dynamos. Astrophys. J, 803, 95.CrossRefGoogle Scholar
Karak, B. B., Kitchatinov, L. L., & Choudhuri, A. R. 2014,b A Dynamo Model of Magnetic Activity in Solar-like Stars with Different Rotational Velocities. Astrophys. J, 791b, 59.CrossRefGoogle Scholar
Karak, B. B., Mandal, S., & Banerjee, D. 2018, Double Peaks of the Solar Cycle: An Explanation from a Dynamo Model. Astrophys. J, 866(1), 17.CrossRefGoogle Scholar
Karak, B. B. & Miesch, M. 2017, Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock–Leighton Solar Dynamo Model. Astrophys. J, 847, 69.CrossRefGoogle Scholar
Karak, B. B. & Miesch, M. 2018, Recovery from Maunder-like Grand Minima in a Babcock–Leighton Solar Dynamo Model. Astrophys. J, 860, L26.CrossRefGoogle Scholar
Karak, B. B., Tomar, A., & Vashishth, V. 2020, Stellar dynamos with solar and antisolar differential rotations: Implications to magnetic cycles of slowly rotating stars. MNRAS, 491(3), 31553164.CrossRefGoogle Scholar
Kitchatinov, L. & Nepomnyashchikh, A. 2017, How supercritical are stellar dynamos, or why do old main-sequence dwarfs not obey gyrochronology? MNRAS, 470(3), 31243130.CrossRefGoogle Scholar
Kitchatinov, L. L. & Olemskoy, S. V. 2011, Does the Babcock–Leighton mechanism operate on the Sun? Astronomy Letters, 37, 656658.CrossRefGoogle Scholar
Kitchatinov, L. L. & Olemskoy, S. V. 2016, Dynamo model for grand maxima of solar activity: can superflares occur on the Sun? MNRAS, 459(4), 43534359.CrossRefGoogle Scholar
Kumar, P., Biswas, A., & Karak, B. B. 2022, Physical link of the polar field buildup with the Waldmeier effect broadens the scope of early solar cycle prediction: Cycle 25 is likely to be slightly stronger than Cycle 24. MNRAS, 513(1), L112L116.CrossRefGoogle Scholar
Kumar, P., Karak, B. B., & Sreedevi, A. 2023,. MNRAS, submitted.Google Scholar
Kumar, P., Karak, B. B., & Vashishth, V. 2021,a Supercriticality of the Dynamo Limits the Memory of the Polar Field to One Cycle. Astrophys. J, 913a(1), 65.CrossRefGoogle Scholar
Kumar, P., Nagy, M., Lemerle, A., Karak, B. B., & Petrovay, K. 2021,b The Polar Precursor Method for Solar Cycle Prediction: Comparison of Predictors and Their Temporal Range. Astrophys. J, 909b(1), 87.CrossRefGoogle Scholar
Leighton, R. B. 1964, Transport of Magnetic Fields on the Sun. Astrophys. J, 140, 1547.CrossRefGoogle Scholar
Lemerle, A. & Charbonneau, P. 2017, A Coupled 2 × 2D Babcock–Leighton Solar Dynamo Model. II. Reference Dynamo Solutions. Astrophys. J, 834, 133.CrossRefGoogle Scholar
Mandal, S., Karak, B. B., & Banerjee, D. 2017, Latitude Distribution of Sunspots: Analysis Using Sunspot Data and a Dynamo Model. Astrophys. J, 851, 70.CrossRefGoogle Scholar
Martin–Belda, D. & Cameron, R. H. 2017, Inflows towards active regions and the modulation of the solar cycle: A parameter study. Astrophys. J, 597, A21.Google Scholar
Miesch, M. S. & Dikpati, M. 2014, A Three-dimensional Babcock–Leighton Solar Dynamo Model. Astrophys. J, 785, L8.CrossRefGoogle Scholar
Miesch, M. S. & Teweldebirhan, K. 2016, A three-dimensional Babcock–Leighton solar dynamo model: Initial results with axisymmetric flows. Advances in Space Research, 58(8), 15711588.CrossRefGoogle Scholar
Mordvinov, A. V., Karak, B. B., Banerjee, D., Golubeva, E. M., Khlystova, A. I., Zhukova, A. V., & Kumar, P. 2022, Evolution of the Sun’s activity and the poleward transport of remnant magnetic flux in Cycles 21-24. MNRAS, 510(1), 13311339.CrossRefGoogle Scholar
Muñoz-Jaramillo, A., Dasi–Espuig, M., Balmaceda, L. A., & DeLuca, E. E. 2013, Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies. Astrophys. J, 767, L25.CrossRefGoogle Scholar
Nagy, M., Lemerle, A., & Charbonneau, P. 2020, Impact of nonlinear surface inflows into activity belts on the solar dynamo. Journal of Space Weather and Space Climate, 10, 62.CrossRefGoogle Scholar
Nagy, M., Lemerle, A., Labonville, F., Petrovay, K., & Charbonneau, P. 2017, The Effect of “Rogue” Active Regions on the Solar Cycle. Sol Phys, 292, 167.CrossRefGoogle Scholar
Nandy, D. & Choudhuri, A. R. 2000, The Role of Magnetic Buoyancy in a Babcock–Leighton Type Solar Dynamo. Journal of Astrophysics and Astronomy, 21, 381.CrossRefGoogle Scholar
Ölçek, D., Charbonneau, P., Lemerle, A., Longpré, G., & Boileau, F. 2019, Grand Activity Minima and Maxima via Dual Dynamos. Sol Phys, 294(7), 99.CrossRefGoogle Scholar
Olemskoy, S. V. & Kitchatinov, L. L. 2013, Grand Minima and North-South Asymmetry of Solar Activity. Astrophys. J, 777, 71.CrossRefGoogle Scholar
Parker, E. N. 1955, Hydromagnetic Dynamo Models. Astrophys. J, 122, 293.CrossRefGoogle Scholar
Passos, D., Nandy, D., Hazra, S., & Lopes, I. 2014, A solar dynamo model driven by mean-field alpha and Babcock–Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astrophys. J, 563, A18.Google Scholar
Petrovay, K. 2020, Solar cycle prediction. Living Reviews in Solar Physics, 17(1), 2.CrossRefGoogle Scholar
Priyal, M., Banerjee, D., Karak, B. B., Muñoz-Jaramillo, A., Ravindra, B., Choudhuri, A. R., & Singh, J. 2014, Polar Network Index as a Magnetic Proxy for the Solar Cycle Studies. Astrophys. J, 793, L4.CrossRefGoogle Scholar
Schuessler, M. & Solanki, S. K. 1992, Why rapid rotators have polar spots. Astrophys. J, 264, L13L16.Google Scholar
Sreedevi, A., Jha, B. K., Karak, B. B., & Banerjee, D. 2023, AutoTAB: Automatic Tracking Algorithm for Bipolar Magnetic Regions. Astrophys. J Supplement Series, 268(2), 58.CrossRefGoogle Scholar
Stenflo, J. O. & Kosovichev, A. G. 2012, Bipolar Magnetic Regions on the Sun: Global Analysis of the SOHO/MDI Data Set. Astrophys. J, 745, 129.CrossRefGoogle Scholar
Teweldebirhan, K., Miesch, M., & Gibson, S. 2023, Inflows towards Bipolar Magnetic Active Regions and Their Nonlinear Impact on a Three-Dimensional Babcock–Leighton Solar Dynamo Model. arXiv e-prints, arXiv:2310.00738.Google Scholar
Tripathi, B., Nandy, D., & Banerjee, S. 2021, Stellar mid-life crisis: subcritical magnetic dynamos of solar-like stars and the breakdown of gyrochronology. MNRAS, 506(1), L50L54.CrossRefGoogle Scholar
Upton, L. & Hathaway, D. H. 2014, Effects of Meridional Flow Variations on Solar Cycles 23 and 24. Astrophys. J, 792(2), 142.CrossRefGoogle Scholar
Usoskin, I. G. 2023, A history of solar activity over millennia. Living Reviews in Solar Physics, 20(1), 2.CrossRefGoogle Scholar
Usoskin, I. G., Arlt, R., Asvestari, E., Hawkins, E., Käpylä, M., Kovaltsov, G. A., Krivova, N., Lockwood, M., Mursula, K., O’Reilly, J., Owens, M., Scott, C. J., Sokoloff, D. D., Solanki, S. K., Soon, W., & Vaquero, J. M. 2015, The Maunder minimum (1645-1715) was indeed a grand minimum: A reassessment of multiple datasets. Astrophys. J, 581, A95.Google Scholar
Vashishth, V., Karak, B. B., & Kitchatinov, L. 2021, Subcritical dynamo and hysteresis in a Babcock–Leighton type kinematic dynamo model. Research in Astronomy and Astrophysics, 21(10), 266.CrossRefGoogle Scholar
Vashishth, V., Karak, B. B., & Kitchatinov, L. 2023, Dynamo modelling for cycle variability and occurrence of grand minima in Sun-like stars: rotation rate dependence. MNRAS, 522(2), 26012610.CrossRefGoogle Scholar
Waldmeier, M. 1955, Ergebnisse und Probleme der Sonnenforschung. Ergebnisse und Probleme der Sonnenforschung (Leipzig: Geest & Portig),.Google Scholar
Wang, Y.-M. & Sheeley, N. R. 2009, Understanding the Geomagnetic Precursor of the Solar Cycle. Astrophys. J, 694, L11L15.CrossRefGoogle Scholar
Zolotova, N. V. & Ponyavin, D. I. 2016, How Deep Was the Maunder Minimum? Sol Phys, 291, 28692890.CrossRefGoogle Scholar