Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T11:29:47.288Z Has data issue: false hasContentIssue false

The RAVE harvest: from the relation between abundances and kinematic of the Milky Way stars to tools for the abundance analysis of the spectra

Published online by Cambridge University Press:  06 January 2014

Corrado Boeche
Affiliation:
Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg Mönchhofstr. 12-14, 69120 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

RAVE is a spectroscopic survey of the Milky Way which collected more than 500,000 stellar spectra of nearby stars in the Galaxy. The RAVE consortium analysed these spectra to obtain radial velocities, stellar parameters and chemical abundances. These data, together with spatial and kinematic information like positions, proper motions, and distance estimations, make the RAVE database a rich source for galactic archaeology. I present recent investigations on the chemo-kinematic relations and chemical gradients in the Milky Way disk using RAVE data and compare our results with the Besançon models. I also present the code SPACE, an evolution of the RAVE chemical pipeline, which integrates the measurements of stellar parameters and chemical abundances in one single process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Boeche, C., Siebert, A., Williams, M., et al., 2011, AJ, 142, 193Google Scholar
Breddels, M. A., Smith, M. C., Helmi, A., et al. 2010, A&A, 511, A90Google Scholar
Burnett, B., Binney, J., Sharma, S., et al. 2011, AAP, 532, A113Google Scholar
Cheng, J. Y., Rockosi, C. M., Morrison, H. L., et al. 2012, ApJ, 746, 149Google Scholar
Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, AAP, 355, L27Google Scholar
Dehnen, W., Binney, J. 1998, MNRAS, 294, 429Google Scholar
Matijevič, G., Zwitter, T., Bienaymé, O., et al. 2012, ApJS, 200, 14Google Scholar
Pasquali, A., Perinotto, M. 1993, A&A, 280, 581Google Scholar
Prugniel, P., Soubiran, C., Koleva, M. & Le Borgne, D. 2007, arXiv:astro-ph/0703658Google Scholar
Röser, S., Schilbach, E., Schwan, H., et al. 2008, A&A, 488, 401Google Scholar
Röser, S., Demleitner, M., & Schilbach, E. 2010, AJ, 139, 2440Google Scholar
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523Google Scholar
Sharma, S., Bland-Hawthorn, J., Johnston, K. V., & Binney, J. 2011, ApJ, 730, 3Google Scholar
Siebert, A., Williams, M. E. K., Siviero, A., et al. 2011, AJ, 141, 187Google Scholar
Steinmetz, M., Zwitter, T., Siebert, A., et al. 2006, AJ, 132, 16451Google Scholar
Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, AJ, 137, 4377Google Scholar
Zacharias, N., Urban, S. E., Zacharias, M. I., et al. 2004, AJ, 127, 3043Google Scholar
Zwitter, T., Siebert, A., Munari, U., et al. 2008, AJ, 136, 421Google Scholar
Zwitter, T., Matijevič, G., Breddels, M. A., et al. 2010, A&A, 522, 54Google Scholar