Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T00:42:12.886Z Has data issue: false hasContentIssue false

Ratio of kinetic-to-bolometric luminosity at the “cold” disk accretion onto black holes

Published online by Cambridge University Press:  07 April 2020

Sergey Bogovalov*
Affiliation:
National Research Nuclear University (MEPHI), Kashirskoje shosse, 31, Moscow, Russia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In galactic nuclei (AGN), the kinetic energy flux of the jet may exceed the bolometric luminosity of the disk a few orders of magnitude. At the “cold” accretion the radiation from the disk is suppressed because the wind from the disk carries out almost all the angular momentum and the gravitational energy of the accreted material. We calculate an unavoidable radiation from such a disk and the ratio of the kinetic-to-bolometric luminosity from a super massive black hole in framework of the paradigm of the optically thick α-disk of Shakura & Sunyaev. The results confirm that the gravitational energy of the accreted material can be the only source of energy in AGNs.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Barkov, M. V. & Khangulyan, D. V., 2012. MNRAS, vol. 421, 1351CrossRefGoogle Scholar
Blandford, R. D. & Znajek, R. L., 1977. MNRAS, vol. 179, 433CrossRefGoogle Scholar
Bogovalov, S. V., 2018. ArXiv e-printsGoogle Scholar
Bogovalov, S. V. & Kelner, S. R., 2010. International Journal of Modern Physics D, vol. 19, 339CrossRefGoogle Scholar
Churazov, E., Sazonov, S., Sunyaev, R.et al., 2005. MNRAS, vol. 363, L91CrossRefGoogle Scholar
Daly, R. A., 2016. MNRAS, vol. 458, L24CrossRefGoogle Scholar
Daly, R. A., Stout, D. A., & Mysliwiec, J. N., 2016. ArXiv e-printsGoogle Scholar
Esin, A. A., McClintock, J. E., & Narayan, R., 1997. ApJ, vol. 489, 865CrossRefGoogle Scholar
Fernandes, C. A. C., Jarvis, M. J., Rawlings, S.et al., 2011. MNRAS, vol. 411, 1909CrossRefGoogle Scholar
Ferreira, J. & Pelletier, G., 1995. A&A, vol. 295, 807Google Scholar
Ghisellini, G., Tavecchio, F., Maraschi, L.et al., 2014. Nature, vol. 515, 376CrossRefGoogle Scholar
Körding, E. G., Jester, S., & Fender, R., 2008. MNRAS, vol. 383, 277CrossRefGoogle Scholar
Li, S.-L., 2014. ApJ, vol. 788, 71CrossRefGoogle Scholar
López-Corredoira, M. & Perucho, M., 2012. A&A, vol. 544, A56Google Scholar
Ma, M.-L., Cao, X.-W., Jiang, D.-R.et al., 2008. Chinese J. Astron. Astrophys., vol. 8, 39Google Scholar
McNamara, B. R., Rohanizadegan, M., & Nulsen, P. E. J., 2011. ApJ, vol. 727, 39CrossRefGoogle Scholar
Pelletier, G. & Pudritz, R. E., 1992. ApJ, vol. 394, 117CrossRefGoogle Scholar
Punsly, B., 2011. ApJ, vol. 728, L17CrossRefGoogle Scholar
Salvesen, G., Simon, J. B., Armitage, P. J.et al., 2016. MNRAS, vol. 457, 857CrossRefGoogle Scholar
Shakura, N. I. & Sunyaev, R. A., 1973. A&A, vol. 24, 337Google Scholar
Tchekhovskoy, A., Narayan, R., & McKinney, J. C., 2011. MNRAS, vol. 418, L79CrossRefGoogle Scholar