Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T22:46:26.740Z Has data issue: false hasContentIssue false

A radio survey of Galactic center clouds

Published online by Cambridge University Press:  22 May 2014

E. A. C. Mills
Affiliation:
National Radio Astronomy Observatory, USA (email: [email protected])
C. C. Lang
Affiliation:
Dept. of Physics & Astronomy, University of Iowa, USA
M. R. Morris
Affiliation:
Dept. of Physics & Astronomy, University of California-Los Angeles, USA
J. Ott
Affiliation:
National Radio Astronomy Observatory, USA (email: [email protected])
N. Butterfield
Affiliation:
Dept. of Physics & Astronomy, University of Iowa, USA
D. Ludovici
Affiliation:
Dept. of Physics & Astronomy, University of Iowa, USA
S. Schmitz
Affiliation:
Dept. of Physics & Astronomy, University of Iowa, USA
A. Schmiedeke
Affiliation:
I. Physikalisches Institut, Universität zu Köln, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a radio survey of molecules in a sample of Galactic center molecular clouds, including M0.25 + 0.01, the clouds near Sgr A, and Sgr B2. The molecules detected are primarily NH3 and HC3N; in Sgr B2-N we also detect non-metastable NH3, vibrationally-excited HC3N, torsionally-excited CH3OH, and numerous isotopologues of these species. 36 GHz Class I CH3OH masers are ubiquitous in these fields, and in several cases are associated with new NH3 (3,3) maser candidates. We also find that NH3 and HC3N are depleted or absent toward several of the highest dust column density peaks identified in submillimeter observations, which are associated with water masers and are thus likely in the early stages of star formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bally, J., Stark, A., Wilson, T. L., & Henkel, C. 1987, ApJS 65, 13CrossRefGoogle Scholar
Coil, A. L. & Ho, P. T. P. 2000, ApJ 533, 245CrossRefGoogle Scholar
De Pree, C. G., Goss, W. M., & Gaume, R. A. 1998, ApJ 500, 847CrossRefGoogle Scholar
Güsten, R. & Downes, D. 1983, A&A 117, 343Google Scholar
Herrnstein, R. M. & Ho, P. T. P. 2005, ApJ 620, 287Google Scholar
Hollis, J. M., Pedelty, J. A., Boboltz, D. A., Liu, S.-Y., Snyder, L. E., et al. 2005, ApJ 596, L235Google Scholar
Jones, P. A., Burton, M. G., Cunningham, M. R., Tothill, N., & Walsh, A. 2005, MNRAS 433, 221Google Scholar
Kauffmann, J., Pillai, T., & Zhang, Q. 2013, ApJ 765, L35CrossRefGoogle Scholar
Lis, D. C., Menten, K. M., Serabyn, E., & Zylka, R. 1994, ApJ 423, L39Google Scholar
Liu, S.-Y. & Snyder, L. E. 1999, ApJ 523, 683CrossRefGoogle Scholar
Longmore, S. N., Rathborne, J., Bastian, N., Alves, J., Ascenso, J., et al. 2005, ApJ 746, 117Google Scholar
Martín, S., Martín-Pintado, J., Montero-Castaño, M., Ho, P. T. P., et al. 2012, A&A 539, 21Google Scholar
Martín-Pintado, J., Gaume, R. A., Rodríguez-Fernández, N., et al. 1999, ApJ 519, 667CrossRefGoogle Scholar
Mills, E. A. C. & Morris, M. R. 2013, ApJ 772, 105CrossRefGoogle Scholar
Peng, Y., Vogel, S. N., & Carlstrom, J. E. 1993, ApJ 418, 255CrossRefGoogle Scholar
Pierce-Price, D., Richer, J. S., Greaves, J. S., Holland, W. S., et al. 2000, ApJ 545, L121CrossRefGoogle Scholar
Qin, S. L., Schilke, P., Rolffs, R., Comito, C., Lis, D. C., & Zhang, Q. 2011, A&A 530, L9Google Scholar
Sjouwerman, L. O., Lindqvist, M., van Langevelde, H. J., & Diamond, P. J. 2002, A&A 391, 967Google Scholar
Sjouwerman, L. O., Pihlström, Y. M., & Fish, V. L. 2010, ApJ 710, L111CrossRefGoogle Scholar
Vogel, S. N., Genzel, R., & Palmer, P. 1987, ApJ 316, 243Google Scholar
Yusef-Zadeh, F., Braatz, J., Wardle, M., & Roberts, D. 2008, ApJ 683, L147CrossRefGoogle Scholar