Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T15:23:31.873Z Has data issue: false hasContentIssue false

Radio jets: Properties, life and impact

Published online by Cambridge University Press:  29 January 2021

Raffaella Morganti*
Affiliation:
ASTRON, the Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our view of the properties of extragalactic radio jets and the impact they have on the host galaxy has expanded in the recent years. This has been possible thanks to the data from new or upgraded radio telescopes. This review briefly summarises the current status of the field and describes some of the exciting recent results and the surprises they have brought. In particular, the physical properties of radio jets as function of their radio power will be discussed together with the advance made in understanding the life-cycle of radio sources. The evolutionary stage (e.g. newly born, dying, restarted) of the radio AGN can be derived from their morphology and properties of the radio spectra. The possibilities offered by the new generation of low-frequency radio telescopes make it possible to derive (at least to first order) the time-scale spent in each phase. The presence of a cycle of activity ensures a recurrent impact of the radio jets on their surrounding inter-stellar and inter-galactic medium and, therefore, their relevance for AGN feedback. The last part is dedicated to the recent results showing the effect of jets on the surrounding galactic medium. The predictions made by numerical simulations on the impact of a radio jet (and in particular a newly born jet) on a clumpy medium describe well what is seen by the observations. The high resolution studies of jet-driven outflows of cold gas (and molecular) has provided new important addition both in term of quantifying the impact of the outflows and their relevance for feedback as well as for providing an unexpected view of the physical conditions of the gas under these extreme conditions.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alatalo, K., Blitz, L., Young, L. M., et al. 2011, ApJ, 735, 8810.1088/0004-637X/735/2/88CrossRefGoogle Scholar
Aditya, J. N. H. S. & Kanekar, N. 2018, MNRAS, 473, 5910.1093/mnras/stx2325CrossRefGoogle Scholar
Audibert, A., Combes, F., Garca-Burillo, S., et al. 2019, A&A, 632, A33Google Scholar
Axon, D. J., Marconi, A., Capetti, A., et al. 1998, ApJL, 496, L7510.1086/311249CrossRefGoogle Scholar
Baldi, R. D., Capetti, A., & Giovannini, G. 2015, A&A, 576, A38Google Scholar
Baldi, R. D., Capetti, A., & Giovannini, G. 2019, MNRAS, 482, 229410.1093/mnras/sty2703CrossRefGoogle Scholar
Blandford, R., Meier, D., & Readhead, A. 2019, AR&AA, 57, 46710.1146/annurev-astro-081817-051948CrossRefGoogle Scholar
Bicknell, G. V., Dopita, M. A., Tsvetanov, Z. I., et al. 1998, ApJ, 495, 68010.1086/305336CrossRefGoogle Scholar
Brienza, M., Godfrey, L., Morganti, R., et al. 2017, A&A, 606, A98Google Scholar
Brienza, M., Morganti, R., Murgia, M., et al. 2018, A&A, 618, A45Google Scholar
Capetti, A., Axon, D. J., Macchetto, F. D., et al. 1999, ApJ, 516, 18710.1086/307099CrossRefGoogle Scholar
Cavagnolo, K. W., McNamara, B. R., Nulsen, P. E. J., et al. 2010, ApJ, 720, 106610.1088/0004-637X/720/2/1066CrossRefGoogle Scholar
Cielo, S., Bieri, R., Volonteri, M., Wagner, A. Y., & Dubois, Y. 2018, MNRAS, 477, 133610.1093/mnras/sty708CrossRefGoogle Scholar
Ciotti, L., Ostriker, J. P., & Proga, D. 2010, ApJ, 717, 70810.1088/0004-637X/717/2/708CrossRefGoogle Scholar
Clarke, D. A., Bridle, A. H., Burns, J. O., et al. 1992, ApJ, 385, 173.10.1086/170925CrossRefGoogle Scholar
Combes, F., Garca-Burillo, S., Casasola, V., et al. 2013, A&A, 558, A124Google Scholar
Croston, J. H., Kraft, R. P., & Hardcastle, M. J. 2007, ApJ, 660, 19110.1086/513500CrossRefGoogle Scholar
Croston, J. H., Hardcastle, M. J., Kharb, P., Kraft, R. P., & Hota, A. 2008, ApJ, 688, 19010.1086/592268CrossRefGoogle Scholar
Croston, J. H., Ineson, J., & Hardcastle, M. J. 2018, MNRAS 476, 161410.1093/mnras/sty274CrossRefGoogle Scholar
Dasyra, K. M., Combes, F., Oosterloo, T., et al. 2016, A&A, 595, L7Google Scholar
Fabbiano, G., Paggi, A., Karovska, M., et al. 2018, ApJ, 865, 8310.3847/1538-4357/aadc5dCrossRefGoogle Scholar
Fanaroff, B. L. & Riley, J. M. 1974, MNRAS, 167, 31P10.1093/mnras/167.1.31PCrossRefGoogle Scholar
Feruglio, C., Maiolino, R., Piconcelli, E., et al. 2010, A&A, 518, L155Google Scholar
Fotopoulou, C. M., Dasyra, K. M., Combes, F., et al. 2019, A&A, 629, A30Google Scholar
Gallimore, J. F., Baum, S. A., O’Dea, C. P., et al. 1999, ApJ, 524, 68410.1086/307853CrossRefGoogle Scholar
Garca-Burillo, S., Combes, F., Usero, A., et al. 2014, A&A, 567, A125Google Scholar
Gaspari, M., Temi, P., & Brighenti, F. 2017, MNRAS, 466, 67710.1093/mnras/stw3108CrossRefGoogle Scholar
Geréb, K., Maccagni, F. M., Morganti, R., & Oosterloo, T. A. 2015, A&A, 575, A44Google Scholar
Giroletti, M., Giovannini, G., & Taylor, G. B. 2005, A&A, 441, 89Google Scholar
Hardcastle, M. J., Massaro, F., Harris, D. E., et al. 2012, MNRAS, 424, 177410.1111/j.1365-2966.2012.21247.xCrossRefGoogle Scholar
Hardcastle, M. J. 2018, MNRAS, 475, 276810.1093/mnras/stx3358CrossRefGoogle Scholar
Harrison, C. M., Thomson, A. P., Alexander, D. M., et al. 2015, ApJ, 800, 4510.1088/0004-637X/800/1/45CrossRefGoogle Scholar
Harrison, C. M., Costa, T., Tadhunter, C. N., et al. 2018, Nature Astronomy, 2, 19810.1038/s41550-018-0403-6CrossRefGoogle Scholar
Harwood, J. J., Croston, J. H., Intema, H. T., et al. 2016, MNRAS, 458, 444310.1093/mnras/stw638CrossRefGoogle Scholar
Heesen, V., Croston, J. H., Morganti, R., et al. 2018, MNRAS, 474, 504910.1093/mnras/stx2869CrossRefGoogle Scholar
Holt, J., Tadhunter, C. N., & Morganti, R. 2008, MNRAS, 387, 63910.1111/j.1365-2966.2008.13089.xCrossRefGoogle Scholar
Holt, J., Tadhunter, C. N., & Morganti, R. 2009, MNRAS, 400, 58910.1111/j.1365-2966.2009.15491.xCrossRefGoogle Scholar
Husemann, B., Scharwächter, J., Davis, T. A., et al. 2019a, A&A, 627, A53Google Scholar
Husemann, B., Bennert, V. N., Jahnke, K., et al. 2019b, ApJ, 879, 7510.3847/1538-4357/ab24bcCrossRefGoogle Scholar
Jarvis, M. E., Harrison, C. M., Thomson, A. P., et al. 2019, MNRAS, 485, 271010.1093/mnras/stz556CrossRefGoogle Scholar
Johnston, S., Bailes, M., Bartel, N., et al. 2007, PASA, 24, 17410.1071/AS07033CrossRefGoogle Scholar
Jonas, J. & MeerKAT Team 2016, Meerkat Science: On the Pathway to the SKA, 1Google Scholar
Jurlin, N., Morganti, R., Brienza, M., et al. 2020, A&A, 638, A34Google Scholar
Kaiser, C. R. & Best, P. N. 2007, MNRAS, 381, 154810.1111/j.1365-2966.2007.12350.xCrossRefGoogle Scholar
Kharb, P., O’Dea, C. P., Baum, S. A., et al. 2014, MNRAS, 440, 297610.1093/mnras/stu421CrossRefGoogle Scholar
Kellermann, K. I., Sramek, R., Schmidt, M., et al. 1989, ApJ, 98, 1195Google Scholar
King, A. & Pounds, K. 2015, AR&AA, 53, 11510.1146/annurev-astro-082214-122316CrossRefGoogle Scholar
Konar, C., Hardcastle, M. J., Jamrozy, M., et al. 2012, MNRAS, 424, 106110.1111/j.1365-2966.2012.21279.xCrossRefGoogle Scholar
Kunert-Bajraszewska, M., Gawroński, M. P., Labiano, A., et al. 2010, MNRAS, 408, 2261Google Scholar
Laing, R. 2015, Proceedings of “the Many Facets of Extragalactic Radio Surveys: Towards New Scientific Challenges” (EXTRA-RADSUR2015). 20–23 October 2015. Bologna, 67Google Scholar
Laing, R. A. & Bridle, A. H. 2014, MNRAS, 437, 340510.1093/mnras/stt2138CrossRefGoogle Scholar
Laing, R. A. & Bridle, A. H. 2012, MNRAS, 424, 114910.1111/j.1365-2966.2012.21297.xCrossRefGoogle Scholar
Maccagni, F. M., Morganti, R., Oosterloo, T. A., Geréb, K., Maddox, N., 2017, A&A, 604, A43Google Scholar
Mahatma, V. H., Hardcastle, M. J., Williams, W. L., et al. 2019, A&A, 622, A13Google Scholar
Mahony, E. K., Oonk, J. B. R., Morganti, R., et al. 2016, MNRAS, 455, 245310.1093/mnras/stv2456CrossRefGoogle Scholar
Maksym, W. P., Fabbiano, G., Elvis, M., et al. 2019, ApJ, 872, 9410.3847/1538-4357/aaf4f5CrossRefGoogle Scholar
May, D., Rodrguez-Ardila, A., Prieto, M. A., et al. 2018, MNRAS, 481, L10510.1093/mnrasl/sly155CrossRefGoogle Scholar
McNamara, B. R. & Nulsen, P. E. J. 2012, New Journal of Physics, 14, 05502310.1088/1367-2630/14/5/055023CrossRefGoogle Scholar
Mingo, B., Croston, J. H., Hardcastle, M. J., et al. 2019, MNRAS, 488, 2701Google Scholar
Morganti, R., Fanti, C., Fanti, R., et al. 1987, A&A, 183, 203Google Scholar
Morganti, R., Tsvetanov, Z. I., Gallimore, J., et al. 1999, A&AS, 137, 457Google Scholar
Morganti, R., Oosterloo, T. A., Emonts, B. H. C., et al. 2003, ApJL, 593, L6910.1086/378219CrossRefGoogle Scholar
Morganti, R., Tadhunter, C. N., & Oosterloo, T. A. 2005a, A&A, 444, L9Google Scholar
Morganti, R., Oosterloo, T. A., Tadhunter, C. N., et al. 2005b, A&A, 439, 521Google Scholar
Morganti, R., Holt, J., Saripalli, L., et al. 2007, A&A, 476, 735Google Scholar
Morganti, R., Fogasy, J., Paragi, Z., Oosterloo, T., & Orienti, M. 2013, Science, 341, 108210.1126/science.1240436CrossRefGoogle Scholar
Morganti, R., Oosterloo, T., Oonk, J. B. R., Frieswijk, W., Tadhunter, C. 2015, A&A, 580, A1Google Scholar
Morganti, R. 2017a, Nature Astronomy, 1, 59610.1038/s41550-017-0223-0CrossRefGoogle Scholar
Morganti, R. 2017b, Frontiers in Astronomy and Space Sciences, 4, 42Google Scholar
Morganti, R. & Oosterloo, T. 2018, A&ARew, 26, 4Google Scholar
Mukherjee, D., Bicknell, G. V., Wagner, A. Y., et al. 2018a, MNRAS, 479, 554410.1093/mnras/sty1776CrossRefGoogle Scholar
Mukherjee, D., Wagner, A. Y., Bicknell, G. V., et al. 2018b, MNRAS, 476, 8010.1093/mnras/sty067CrossRefGoogle Scholar
Mukherjee, D., Bicknell, G. V., Sutherland, R., & Wagner, A. 2016, MNRAS, 461, 96710.1093/mnras/stw1368CrossRefGoogle Scholar
Murthy, S., Morganti, R., Oosterloo, T., et al. 2019, A&A, 629, A58Google Scholar
Nesvadba, N. P. H., Lehnert, M. D., De Breuck, C., Gilbert, A. M., & van Breugel, W. 2008, A&A, 491, 407Google Scholar
Novak, G. S., Ostriker, J. P., & Ciotti, L. 2011, ApJ, 737, 2610.1088/0004-637X/737/1/26CrossRefGoogle Scholar
O’Dea, C. P. 1998, IAU Colloq. 164: Radio Emission from Galactic and Extragalactic Compact Sources, 291Google Scholar
Oosterloo, T., Raymond Oonk, J. B., Morganti, R., et al. 2017, A&A, 608, A38Google Scholar
Oosterloo, T., Morganti, R., Tadhunter, C., et al. 2019, A&A, 632, A66Google Scholar
Orienti, M. 2016, Astronomische Nachrichten, 337, 910.1002/asna.201512257CrossRefGoogle Scholar
Padovani, P. 2017, Nature Astronomy, 1, 019410.1038/s41550-017-0194CrossRefGoogle Scholar
Paragi, Z., Godfrey, L., Reynolds, C., et al. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 143Google Scholar
Parma, P., Murgia, M., de Ruiter, H. R., et al. 2007, A&A, 470, 875Google Scholar
Randall, S. W., Forman, W. R., Giacintucci, S., et al. 2011, ApJ, 726, 8610.1088/0004-637X/726/2/86CrossRefGoogle Scholar
Riffel, R. A., Storchi-Bergmann, T., & Riffel, R. 2014, ApJL, 780, L2410.1088/2041-8205/780/2/L24CrossRefGoogle Scholar
Rodrguez-Ardila, A., Prieto, M. A., Mazzalay, X., et al. 2017, MNRAS, 470, 284510.1093/mnras/stx1401CrossRefGoogle Scholar
Ruffa, I., Prandoni, I., Laing, R. A., et al. 2019, MNRAS, 484, 423910.1093/mnras/stz255CrossRefGoogle Scholar
Russell, H. R., McNamara, B. R., Fabian, A. C., et al. 2019, MNRAS, 490, 302510.1093/mnras/stz2719CrossRefGoogle Scholar
Sabater, J., Best, P. N., Hardcastle, M. J., et al. 2019, A&A, 622, A17Google Scholar
Sadler, E. M., Ekers, R. D., Mahony, E. K., et al. 2014, MNRAS, 438, 79610.1093/mnras/stt2239CrossRefGoogle Scholar
Scheuer, P. A. G. 1974, MNRAS, 166, 51310.1093/mnras/166.3.513CrossRefGoogle Scholar
Shabala, S. S., & Godfrey, L. E. H. 2013, ApJ, 769, 12910.1088/0004-637X/769/2/129CrossRefGoogle Scholar
Shabala, S. S., Jurlin, N., Morganti, R., et al. 2020, MNRAS, 496, 1706Google Scholar
Shimwell, T. W., Tasse, C., Hardcastle, M. J., et al. 2019, A&A, 622, A1Google Scholar
Shulevski, A., Morganti, R., Oosterloo, T., et al. 2012, A&A, 545, A91Google Scholar
Schoenmakers, A. P., de Bruyn, A. G., Röttgering, H. J. A., et al. 2000, MNRAS, 315, 37110.1046/j.1365-8711.2000.03430.xCrossRefGoogle Scholar
Schulz, R., Morganti, R., Nyland, K., et al. 2018, A&A, 617, 38Google Scholar
Tadhunter, C. N., Villar-Martin, M., Morganti, R., et al. 2000, MNRAS, 314, 84910.1046/j.1365-8711.2000.03416.xCrossRefGoogle Scholar
Tadhunter, C., Morganti, R., Rose, M., et al. 2014, Nature, 511, 44010.1038/nature13520CrossRefGoogle Scholar
Tadhunter, C. 2016, A&A Rew, 24, 10Google Scholar
Tingay, S. J., Goeke, R., Bowman, J. D., et al. 2013, PASA, 30, e00710.1017/pasa.2012.007CrossRefGoogle Scholar
van Breugel, W., Miley, G., Heckman, T., et al. 1985, ApJ, 290, 49610.1086/163007CrossRefGoogle Scholar
van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2Google Scholar
Vantyghem, A. N., McNamara, B. R., Russell, H. R., et al. 2014, MNRAS, 442, 319210.1093/mnras/stu1030CrossRefGoogle Scholar
Wagner, A. Y., Bicknell, G. V., Umemura, M. 2012, ApJ, 757, 13610.1088/0004-637X/757/2/136CrossRefGoogle Scholar
Walker, R. C., Hardee, P. E., Davies, F. B., et al. 2018, ApJ, 855, 12810.3847/1538-4357/aaafccCrossRefGoogle Scholar
Willott, C. J., Rawlings, S., Blundell, K. M., et al. 1999, MNRAS, 309, 101710.1046/j.1365-8711.1999.02907.xCrossRefGoogle Scholar
Worrall, D. M., & Birkinshaw, M. 2000, ApJ, 530, 71910.1086/308411CrossRefGoogle Scholar