Article contents
Radio jets: Properties, life and impact
Published online by Cambridge University Press: 29 January 2021
Abstract
Our view of the properties of extragalactic radio jets and the impact they have on the host galaxy has expanded in the recent years. This has been possible thanks to the data from new or upgraded radio telescopes. This review briefly summarises the current status of the field and describes some of the exciting recent results and the surprises they have brought. In particular, the physical properties of radio jets as function of their radio power will be discussed together with the advance made in understanding the life-cycle of radio sources. The evolutionary stage (e.g. newly born, dying, restarted) of the radio AGN can be derived from their morphology and properties of the radio spectra. The possibilities offered by the new generation of low-frequency radio telescopes make it possible to derive (at least to first order) the time-scale spent in each phase. The presence of a cycle of activity ensures a recurrent impact of the radio jets on their surrounding inter-stellar and inter-galactic medium and, therefore, their relevance for AGN feedback. The last part is dedicated to the recent results showing the effect of jets on the surrounding galactic medium. The predictions made by numerical simulations on the impact of a radio jet (and in particular a newly born jet) on a clumpy medium describe well what is seen by the observations. The high resolution studies of jet-driven outflows of cold gas (and molecular) has provided new important addition both in term of quantifying the impact of the outflows and their relevance for feedback as well as for providing an unexpected view of the physical conditions of the gas under these extreme conditions.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 15 , Symposium S356: Nuclear Activity in Galaxies Across Cosmic Time , October 2019 , pp. 229 - 242
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union
References
- 3
- Cited by