Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T08:01:24.172Z Has data issue: false hasContentIssue false

Radiation-driven Feedback to the ISM around AGNs

Published online by Cambridge University Press:  21 March 2013

Keiichi Wada*
Affiliation:
Kagoshima University, Kagoshima 890-0065, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although the “donut-like” obscuring molecular torus is often postulated to explain the type-1 and -2 dichotomy in AGNs, its physical origin is still unclear. We propose a plausible mechanism to explain the formation of the geometrically and optically thick torus, i.e. radiation-driven fountain. Using 3-D hydrodynamic simulations including radiative feedback from the central source, taking into account the X-ray heating and radiation pressure on the gas, we found that a vertical circulation of gas is generated in the central few to tens parsecs. Interaction between the non-steady outflows and inflows causes the formation of a geometrically thick torus with internal turbulent motion. As a result, the AGN is obscured for a wide range of solid angles. In a quasi-steady state, the opening angles for the column density toward a black hole < 1023 cm−2 are approximately ± 30° and ± 50° for AGNs with 10% and 1% Eddington luminosity, respectively. Mass inflows through the torus coexist with the outflow and internal turbulent motion, although the average mass accretion rate to the central parsec region is about ten times smaller than the accretion rate required to maintain the assumed AGN luminosity. This implies that relatively luminous AGN activity is intrinsically intermittent or that there are other mechanisms, such as stellar energy feedback, that enhance the mass accretion to the center.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alexander, D. M. & Hickox, R. C. 2011, arXiv:1112.1949Google Scholar
Blondin, J. M. 1994, ApJ, 435, 756Google Scholar
Chen, Y.-M., Wang, J.-M., Yan, C.-S., Hu, C., & Zhang, S. 2009, ApJl, 695, L130Google Scholar
Dorodnitsyn, A., Kallman, T., & Bisnovatyi-Kogan, G. S. 2012, ApJ, 747, 8Google Scholar
Diamond-Stanic, A. M. & Rieke, G. H. 2012, ApJ, 746, 168CrossRefGoogle Scholar
Dalgarno, A., Yan, M., & Liu, W. 1999, ApJs, 125, 237CrossRefGoogle Scholar
Davies, R. I., Sánchez, F. M., Genzel, R., Tacconi, L. J., Hicks, E. K. S., Friedrich, S., & Sternberg, A. 2007, ApJ, 671, 1388Google Scholar
Goulding, A. D., Alexander, D. M., Bauer, F. E., et al. 2012, arXiv:1205.1800Google Scholar
Hambrick, D. C., Ostriker, J. P., Naab, T., & Johansson, P. H. 2011, ApJ, 738, 16Google Scholar
Hicks, E. K. S., Davies, R. I., Malkan, M. A., Genzel, R., Tacconi, L. J., Sánchez, F. M., & Sternberg, A. 2009, ApJ, 696, 448Google Scholar
Imanishi, M., Ichikawa, K., Takeuchi, T., et al. 2011, PASJ, 63, 447Google Scholar
Imanishi, M. & Wada, K. 2004, ApJ, 617, 214Google Scholar
Jaffe, W., et al. 2004, Nature, 429, 47CrossRefGoogle Scholar
Krolik, J. H. 2007, ApJ, 661, 52Google Scholar
Krolik, J. H. & Begelman, M. C. 1988, ApJ, 329, 702Google Scholar
Levenson, N. A., Weaver, K. A., & Heckman, T. M. 2001, ApJs, 133, 269CrossRefGoogle Scholar
Maloney, P. R., Hollenbach, D. J., & Tielens, A. G. G. M. 1996, ApJ, 466, 561CrossRefGoogle Scholar
Meijerink, R. & Spaans, M. 2005, A&Ap, 436, 397Google Scholar
Pérez-Beaupuits, J. P., Wada, K., & Spaans, M. 2011, ApJ, 730, 48Google Scholar
Roth, N., Kasen, D., Hopkins, P. F., & Quataert, E. 2012, arXiv:1204.0063Google Scholar
Shi, J. & Krolik, J. H. 2008, ApJ, 679, 1018CrossRefGoogle Scholar
Schartmann, M., Krause, M., & Burkert, A. 2011, MNRAS, 415, 741Google Scholar
Wada, K. 2001, ApJl, 559, L41Google Scholar
Wada, K., Meurer, G., & Norman, C. A. 2002, ApJ, 577, 197Google Scholar
Wada, K. & Norman, C. A. 2001, ApJ, 547, 172Google Scholar
Wada, K. & Norman, C. A. 2002, ApJl 566 L21 (WN02)CrossRefGoogle Scholar
Wada, K. & Tomisaka, K. 2005, ApJ, 619, 93Google Scholar
Wada, K., Papadopoulos, P. P., & Spaans, M. 2009, ApJ, 702, 63Google Scholar
Woo, J.-H., Kim, J. H., Imanishi, M., & Park, D. 2012, AJ, 143, 49Google Scholar
Yamada, M., Wada, K., & Tomisaka, K. 2007, ApJ, 671, 73CrossRefGoogle Scholar