Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T17:10:48.350Z Has data issue: false hasContentIssue false

Radiation hydrodynamic simulations of super-Eddington accretion flows

Published online by Cambridge University Press:  01 August 2006

Ken Ohsuga*
Affiliation:
Department of Physics, Rikkyo University, Toshimaku, Tokyo 171-8501, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We perform the two-dimensional radiation-hydrodynamic simulations to study the radiation pressure-dominated accretion flows around a black hole (BH). Our simulations show that the highly supercritical accretion flow (mass accretion rate is much larger than the critical value) is composed of the disk region and the outflow region above the disk.

The radiation force supports the thick disk and drives the outflow. The photon trapping plays an important role within the disk, reducing the disk luminosity. On the other hand, in the case that mass accretion rate moderately exceeds the critical value, we find that the disk is unstable and exhibits the limit-cycle oscillations. The disk oscillations in our simulations nicely fit to the variation amplitude and duration of quasi-periodic luminosity variations observed in the GRS 1915+105 microquasar.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Abramowicz, M. A., Czerny, B., Lasota, J. P. & Szuszkiewicz, E. 1988, ApJ, 332, 646CrossRefGoogle Scholar
Begelman, M. C. 1978, MNRAS, 184, 53Google Scholar
Boller, T. 2004, PThPS, 155, 217Google Scholar
Ebisawa, K., Zycki, P., Kubota, A., Mizuno, T. & Watarai, K. 2003, ApJ, 597, 780CrossRefGoogle Scholar
Eggum, G. E., Coroniti, F. V. & Katz, J. I. 1987, ApJ, 323, 634CrossRefGoogle Scholar
Fabbiano, G. 1989, ARA&A, 27, 87Google Scholar
Ferrarese, L., Merritt, D. 2000, ApJ, 539, L9CrossRefGoogle Scholar
Gebhardt, K. et al. 2000, ApJ, 539, L13CrossRefGoogle Scholar
King, A. 2003, ApJ, 596, L27CrossRefGoogle Scholar
Kley, W. 1989, A&A, 222, 141Google Scholar
Lightman, A. P. & Eardley, D. M. 1974, ApJ, 187, L1CrossRefGoogle Scholar
Makishima, K. et al. 2000, ApJ, 535, 632CrossRefGoogle Scholar
Mineshige, S., Kawaguchi, T., Takeuchi, M., & Hayashida, K. 2000, PASJ, 52, 499CrossRefGoogle Scholar
Okuda, T., Fujita, M. & Sakashita, S. 1997, PASJ, 49, 679Google Scholar
Ohsuga, K., Mineshige, S., Mori, M. & Umemura, M. 2002, ApJ, 574, 315Google Scholar
Ohsuga, K., Mori, M., Nakamoto, T. & Mineshige, S. 2005, ApJ, 628, 368CrossRefGoogle Scholar
Ohsuga, K. 2006, ApJ, 640, 923CrossRefGoogle Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, R.A.A&A, 24, 337Google Scholar
Shibazaki, N. & Hōshi, R. 1975, PThPh, 54, 706Google Scholar
Silk, J. & Rees, M. J. 1998, A&A, 331, L1Google Scholar
Vierdayanti, K., Mineshige, S., Ebisawa, K. & Kawaguchi, T. 2006, PASJ, 58, 915CrossRefGoogle Scholar
Yamaoka, K., Ueda, Y. & Inoue, H. 2001, New Century of X-ray Astronomy, ed Inoue, H., Kunieda, H. (ASP Conference Series Volume 251), 426Google Scholar