Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T12:59:10.909Z Has data issue: false hasContentIssue false

The radial acceleration relation and its emergent nature

Published online by Cambridge University Press:  29 March 2021

Davi C. Rodrigues
Affiliation:
Núcleo de Astrofísica e Cosmologia, PPGCosmo & Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, ES, Brazil emails: [email protected], [email protected]
Valerio Marra
Affiliation:
Núcleo de Astrofísica e Cosmologia, PPGCosmo & Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, ES, Brazil emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review some of our recent results about the Radial Acceleration Relation (RAR) and its interpretation as either a fundamental or an emergent law. The former interpretation is in agreement with a class of modified gravity theories that dismiss the need for dark matter in galaxies (MOND in particular). Our most recent analysis, which includes refinements on the priors and the Bayesian test for compatibility between the posteriors, confirms that the hypothesis of a fundamental RAR is rejected at more than 5σ from the very same data that was used to infer the RAR.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Cameron, E., Angus, G. W., Burgess, J. M., et al. 2020, Nat. Astron., 4, 132 10.1038/s41550-019-0998-2CrossRefGoogle Scholar
Lelli, F., McGaugh, S. S., Schombert, J. M., et al. 2016, AJ, 152, 157 10.3847/0004-6256/152/6/157CrossRefGoogle Scholar
Li, P., Lelli, F., McGaugh, S., Schormbert, J., 2018, Astron. Astrophys., 615, A3 10.1051/0004-6361/201732547CrossRefGoogle Scholar
Marra, V., Rodrigues, D. C., de Almeida, Á. O., 2020, MNRAS, 2002.03946Google Scholar
McGaugh, S., Lelli, F., Schombert, J., 2016, Phys. Rev. Lett, 117, 201101 10.1103/PhysRevLett.117.201101CrossRefGoogle Scholar
Rodrigues, D. C., Marra, V., Del Popolo, A., Davari, Z., et al. 2018a, Nature Astronomy, 2, 668 10.1038/s41550-018-0498-9CrossRefGoogle Scholar
Rodrigues, D. C., Marra, V., Del Popolo, A., Davari, Z., et al. 2018b, Nature Astronomy, 2, 927 CrossRefGoogle Scholar
Rodrigues, D. C., Marra, V., Del Popolo, A., Davari, Z., et al. 2020, Nature Astronomy, 4, 134 CrossRefGoogle Scholar
Stone, C. & Courteau, S. 2019, ApJ, 882, 610.3847/1538-4357/ab3126CrossRefGoogle Scholar
Verdem, L., Protopapasm, P., Jimenezm, R. 2013, Phys. Dark Univ., 2, 166 10.1016/j.dark.2013.09.002CrossRefGoogle Scholar